
Of course, we can perform an obvious linear program relaxation replacing the binary constraint
by

1− xi ≥ 0 i = 1, 2, . . . , n
xi ≥ 0 i = 1, 2, . . . , n.

The Reformulation Linearization Technique (RLT) proposed by Sherali and Adams (around
1990’s) is based on the following fact. Construct redundant quadractic constraints and perform a
linearization. In the above case, we can construct three types of quadratic constraints:

xixj ≥ 0 i, j = 1, 2, . . . , n
(1− xi)(1− xj) ≥ 0 i, j = 1, 2, . . . , n
(1− xi)xj ≥ 0 i, j = 1, 2, . . . , n

Replacing all xixj by wij , we will have the following linear program relaxation.
minimize

n∑
i,j=1

Qijwij +
n∑

i=1

qixi

subject to wij ≥ 0 1 ≤ i, j ≤ n
1− xi − xj + wij ≥ 0 1 ≤ i, j ≤ n
xj − wij ≥ 0 1 ≤ i, j ≤ n.

(3)

Of course the optimal value of (3) is smaller than or equal to the one of (2).
We can apply the RLT for a more general quadratic constrained quadratic program.

minimize xTQ0x+ qT0 x
subject to xTQix+ qTi x+ γi ≤ 0 1 ≤ i ≤ r

aT
j x+ bj ≤ 0 1 ≤ j ≤ s.

(4)

Then we can take the products of the linear constraints and perform a similar linearization.

1 ≤ ∀j ≤ ∀k ≤ s

−(aT
j x+ bj)(a

T
k x+ bk)

= −xTaja
T
k x− bka

T
j x− bja

T
k x− bjbk ≤ 0.

At the end, we can obtain the following relaxation for (4):

minimize

n∑
p,ℓ=1

[Q0]pℓwpℓ + qT0 x

subject to
∑
p,ℓ=1

[Qi]pℓwpℓ + qTi x+ γi ≤ 0 1 ≤ i ≤ r

−
n∑

p,ℓ=1

[aja
T
k ]pℓwpℓ − bka

T
j x− bja

T
k x− bjbk ≤ 0 1 ≤ j, k ≤ s

aT
j x+ bj ≤ 0 1 ≤ j ≤ s.

(5)

In some cases, (5) can be unbounded even when (4) has a bounded optimal value. In this case,
it is necessary to add some redundant constraints for (4) in (5).

3.3 Exercises

1. Show that the constraints 0 ≤ xi ≤ 1 (i = 1, 2, . . . , n) are redundant for (3) and therefore,
unnecessary.

2. Give an example of a polyhedron defined by {y ∈ Rm | ATy ≤ c} where A and c have
elements equal to 0,±1, but its vertices do not have integer values (coordinates).
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4 Semidefinite Program Relaxation

4.1 Semidefinite Program (SDP)

If we take K = Sn+ in (CLP), where Sn+ stands for the closed convex cone of real n × n symmetric
positive semidefinite matrices, we have a Semidefinite Program (SDP).

(SDP)


minimize ⟨C,X⟩
subject to ⟨Ai,X⟩ = bi (i = 1, 2, . . . ,m)

X ∈ Sn+,

and its associated dual problem:

(DCLP)


maximize ⟨b,y⟩

subject to
m∑
i=1

Aiyi + S = C,

S ∈ Sn+.

4.2 Maximum Cut Problem

Given a graph G = (V,E) where V := {1, 2, . . . , n} is the set of vertices and E ⊆ V × V is the set
of edges, let us define positive weights for each existing edge (u, v) ∈ E as w : E → R++.

Figure 1: A undirected graph with positive weights.

Given a subset S ⊆ V , the subset of edges δ(S) := {(u, v) ∈ E | u ∈ S, v ∈ V \S} is called a cut
of the graph G = (V,E). We can associate a capacity for the cut by summing all the edges’ weights
of the cut, δw(S) :=

∑
u∈S,v∈V \S w(u, v).

The problem to find a minimum cut (capacity) among all possible ones of a undirected graph
with positive weights is an “easy” problem. This can be understood in the sense that we can use for
instance the famous Ford and Fulkerson method to find the maximum flow of the graph which also
gives the minimum cut of the graph from a specific source vertex to a sink vertex. The application
of this method for all pair of vertices for instance will give the desired result. Of course, there
are other complex algorithms which guarantee polynomial-time number of steps to determine the
minimum cut of a undirected graph.
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