
It is clear that M ̸= ∅. Also M ∩ int(K) = ∅. In fact, if we assume on the contrary that ∃x̄ ∈
M ∩ int(K), since c ̸= 0 and x̄ is an interior point, we can always construct a x̂ ∈ Rn feasible for
(CLP) which ⟨c, x̂⟩ < cval with contradicts the optimality. If we are in the case where this is not
possible, x̄ will be the optimal solution of (CLP). We can see in this case that for any n ∈ Rn

such that A(n) = 0, then ⟨c,n⟩ = 0. Therefore, ∃ȳ ∈ Rm such that A∗(ȳ) = c and it follows that
(ȳ,0) ∈ Rm ×K∗ is an optimal solution for (DCLP).

From Theorem 1.5, ∃s̄ ∈ Rn such that s̄ ̸= 0 and

sup
x∈M

⟨x, s̄⟩ ≤ inf
x∈int(K)

⟨x, s̄⟩.

Since M is nonempty and K is a cone, we have in fact that

sup
x∈M

⟨x, s̄⟩ ≤ 0 = inf
x∈K

⟨x, s̄⟩. (1)

Therefore, due to this fact, s̄ ∈ K∗. From the definition of M , we can conclude that in fact ∃ᾱ ∈ R,
∃β̄ ≥ 0, and ∃ȳ ∈ Rm such that s̄ = ᾱA∗(ȳ) + β̄c. This can be seen since ∀x ∈ M ,

⟨x, s̄⟩ = ⟨A(x), ᾱȳ⟩+ ⟨x, β̄c⟩
= ⟨b, ᾱȳ⟩+ β̄⟨x, c⟩ ≤ constant + β̄cval.

We will show now in fact that β̄ > 0. From the assumption, ∃x̄ ∈ int(K) such that A(x̄) = b.
Then 0 < ⟨x̄, s̄⟩ = ⟨x̄, ᾱA∗(ȳ)⟩ = ᾱ⟨b, ȳ⟩ ≤ 0, where the first strict inequality follows from 0 ̸= s̄ ∈
K∗ and the last inequality from (1). This is a contradiction and then β̄ > 0.

Finally, if we define

s̄

β̄
:= c−A∗

(
− ᾱ

β̄
ȳ

)
s̄

β̄
∈ K∗,

and s̄
β̄
becomes feasible for (DCLP).

Also from (1), ∀x ∈ M , ⟨
x,

s̄

β̄

⟩
=

⟨
b,

ᾱ

β̄
ȳ

⟩
+ ⟨c,x⟩ ≤ 0

and therefore, ⟨c,x⟩ ≤ ⟨b,− ᾱ
β̄
ȳ⟩. However, since we have taken an x(∈ Rn) with A(x) = b such that

⟨c,x⟩ ≤ cval, we have
⟨
b,− ᾱ

β̄
ȳ
⟩
≥ cval. Finally from weak duality (Lemma 2.2),

⟨
b,− ᾱ

β̄
ȳ
⟩
= cval,

which shows the desired result.
The similar result for (DCLP) is left for exercise.

Corollary 2.4 Assume that at least one of the problems (CLP) or (DCLP) is bounded and strictly
feasible. Then a primal-dual feasible solution (x,y, s) ∈ K × Rm ×K∗ is optimal to the respective
problems if and only if

(a) ⟨c,x⟩ = ⟨b,y⟩
or

(b) ⟨x, c−A∗(y)⟩ = 0

Proof:
If (x,y, s) is primal-dual feasible

⟨c,x⟩ − ⟨b,y⟩ = ⟨x, c−A∗(y)⟩ = ⟨x, s⟩.
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2.1 Exercises

1. If K is a closed convex cone, prove that its dual K∗ is also a closed convex cone. Also in this
case, show that (K∗)∗ = K.

2. Let K be a cone. Show that K is convex if and only if a+ b ∈ K for ∀a, b ∈ K.

3. Show that the dual problem of (DCLP) is exactly (CLP) (when K in fact is a closed convex
cone).

4. Complete the proof of Theorem 2.3.

3 Linear Program Relaxation

In the majority of situations, an optimization problem we want to solve is extremely difficult. That
happens in both theory and numerical sense.

In this case, we can always try to solve using some heuristic or meta-heuristic approach such as
random algorithms, tabu search, simulated annealing, multiple-start, genetic algorithms, etc.

In very particular cases when “we are luck”, we can obtain a good approximation for the optimal
value and/or solution performing a conic linear program relaxation.

The relaxation methods and examples given in this lecture are far from being complete or even
do not have a coverage of most important problems in mathematical optimization. However, we
will try to detail some of the famous approaches.

We will start with linear program relaxations.

3.1 Totally Unimodular Matrices

Definition 3.1 A matrix A ∈ Rn×m is said to be totally unimodular if each square submatrix
of it has a determinant which is 0, +1 or −1. In particular, all of its elements take these values.

Theorem 3.2 ([Schrijver]) Let AT ∈ Zn×m be a totally unimodular matrix and let c ∈ Zn be
an integer vector. Then the polyhedron {y ∈ Rm | ATy ≤ c} is equal to the convex hull of integer
vectors.

Therefore, we can conclude from Theorem 3.2 that if we have the following integer program
maximize bTy

subject to ATy ≤ c
y ∈ Zm,

for b ∈ Zm, c ∈ Zn and AT ∈ Zn×m totally unimodular, then solving the following relaxed problem
maximize bTy

subject to ATy ≤ c
y ∈ Rm,

which can be solved by the simplex method for instance, we obtain the desired solution.

3.2 Reformulation Linearization Technique (RLT)

Consider the most simple quadratic program with binary variables.{
minimize xTQx+ qTx
subject to x ∈ {0, 1}n, (2)

where Q ∈ Rn×n and q ∈ Rn.
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