Lecture 5

5 Finite Field

5.1 Finite field of characteristic p

- Characteristic of a field F : The additive order of 1 in F, and it must be a prime number p.
- A finite field F of characteristic p is a vector space over $\mathbb{F}_{p}=\mathbb{Z} /(p)$, and hence $\# F=p^{n}$ for some n.
- The multplicative group F^{\times}of F of order $q=p^{n}$ has order $q-1$, and every $\alpha \in F^{\times}$ satisfies the equation $X^{q-1}=1$. Hence the every element of F satisfies

$$
f(X)=X^{q}-X=0 .
$$

This implies that the plynomial $f(X)$ has q distinct roots in F, ane we have

$$
f(X)=\prod_{\alpha \in F}(X-\alpha)
$$

Thus F is a splitting field of $f(X) \in \mathbb{F}_{p}[X]$, the smallest extension of \mathbb{F}_{p} which contains all roots of $f(X)$.

- The splitting field is unique up to isomorphism (Homework 1), and the isomorphism class of F dependes only of the order $q=p^{n}$. Thus we have confirmed that if there exists a field of order q, then its isomorphism class is unique.
- Examples : A splitting field of $X^{4}-X \in \mathbb{F}_{2}[X]$ is isomorphic to $\mathbb{F}_{2}[Y] /\left(Y^{2}+Y+1\right)$.

Proof. In fact, we have a factorization

$$
X^{4}-X=X(X-1)(X-Y)(X-(Y+1))
$$

- Theorem 5.1.1 : For each prime p and each integer $n \geq 1$, there exists a finite field of order $q=p^{n}$ unique up to isomorphism (hence we denote it by \mathbb{F}_{q}).

Proof. Consider the splitting field F of

$$
X^{q}-X=f(X)
$$

in the algebraic closure $\mathbb{F}_{p}^{\text {alg }}$. We will show first of all that the set of roots of $f(X)$, namely

$$
\begin{equation*}
\left\{\alpha \in \mathbb{F}_{p}^{\text {alg }} ; f(\alpha)=0\right\} \tag{2}
\end{equation*}
$$

forms a field. In fact, the followings are easy to check :

1. 0,1 are roots of $f(X)$.
2. If α, β are roots of $f(X)$, so are $\alpha+\beta$ and $\alpha \beta$.
3. If $\alpha \neq 0$ is a root of $f(X)$, so is α^{-1}.
4. If α is a root of $f(X)$, so is $-\alpha$.

This implies in particular that the splitting field F of $f(X)$ is equal to the set (2) of roots of $f(X)$.

Now, since the derivative of $f(X)$ is $-1, f(X)$ has no multiple roots (Homework 2), and hence the set (2) of roots of $f(X)$ contains exactly q elements.

5.2 Multiplicative group F^{\times}

- Theorem 5.2.1 : The multiplicative group F^{\times}of a finite field F is cyclic.

Proof. If α has order m, then it is a root of $f(X)=X^{m}-1$. On the other hand, $f(X)=0$ has at most m roots in F. Therefore, we have

$$
\begin{equation*}
\#\left\{\alpha \in F^{\times} ; \alpha^{m}=1\right\} \leq m \tag{3}
\end{equation*}
$$

for any m. Notice that F^{\times}is abelian.
Assume that F^{\times}is not cyclic, then by the fundamental theorem of abelian groups, there is some prime r such that F^{\times}contains a subgroup isomorphic to $\mathbb{Z} / r \mathbb{Z} \times \mathbb{Z} / r \mathbb{Z}$. Then the number of elements of order r is more than $r^{2}-1>r$. This contradicts to (3).

5.3 Homework

1. Show that the splitting field of $f(X) \in k[X]$ is unique up to isomorphism.
2. Show that if $f(X) \in k[X]$ has a multiple root, then $f(X), f^{\prime}(X)$ have common factor in $k[X]$.
3. Find the splitting field of $X^{p^{8}}-1$ over \mathbb{F}_{p}.
4. Let p be prime and $q=p^{n}$. Show that every element of \mathbb{F}_{q} has a unique p-th root in \mathbb{F}_{q}.
5. Suppose K is a field of characteristic p, and let $\alpha \in K$. Show that if α has no p-th root in K, then $X^{p^{n}}-a$ is irreducible in $K[X]$ for all positive integers n.
6. Show that every element of a finite field can be written as a sum of two squares in that field.
