Lecture 3

3 Cyclotomic Field

3.1 Root of Unity

- $\zeta_n = e^{2\pi i/n} = \cos 2\pi/n + i \sin 2\pi/n.$
- Cyclotopmic field : $\mathbb{Q}(\zeta_n)$.
- If d|n, then $\mathbb{Q}(\zeta_d) \subset \mathbb{Q}(\zeta_n)$.
- Primitive root of unity : ζ_n^m where (n,m) = 1. Then $\mathbb{Q}(\zeta_n) = \mathbb{Q}(\zeta_n^m)$.
- Euler function : $\varphi(n) = \#\{m \in \mathbb{Z} ; (n,m) = 1, 1 \le m \le n\}$

3.2 Cyclotomic Polynomial

• The cyclotomoic polynomial is a monic polynomial whose roots are primitive roots of unity :

$$\Phi_n(X) = \prod_{1 \le m \le n, (n,m)=1} (X - \zeta_n^m)$$

• Then,

$$\prod_{d|n} \Phi_d(X) = X^n - 1,$$

and by Möbius inversion formula, we have

$$\Phi_n(X) = \prod_{d|n} (X^d - 1)^{\mu(n/d)},$$
(1)

where μ is the Möbius function defined for $n = p_1^{e_1} p_2^{e_2} \cdots p_m^{e_m}$ by

$$\mu(n) = \begin{cases} 1 & \text{if } n = 1, \\ (-1)^m & \text{if } e_1 = e_2 = \dots = e_m = 1, \\ 0 & \text{otherwise.} \end{cases}$$

Since the left hand side of (1) is polynomial, the denominator of the right hand side divides the numerator. Also the denominator is monic, it implies that $\Phi_n(X)$ is a integer polynomial.

- Example : $\Phi_6(X) = \frac{(X^6 1)(X 1)}{(X^3 1)(X^2 1)} = X^2 X + 1$
- Theorem 3.2.1 : $\Phi_n(X)$ is irreducible over \mathbb{Q} . In particular, $\operatorname{Irr}_{\mathbb{Q}}(\zeta_n) = \Phi_n(X)$ and $[\mathbb{Q}(\zeta_n) : \mathbb{Q}] = \varphi(n)$.

To show this, we need two lemmas.

• Lemma 3.2.2 : Let p be a prime number and h(X) a polynomial with integer coefficients. Then

$$(h(X))^p \equiv h(X^p) \mod p$$

Proof. Apply induction on the degree of h. If deg h = 0, the assertion is nothing but the Fermat's little theorem. Suppose $h = aX^m + g$ where deg $g < \deg h$. Then

$$(h(X))^p \equiv a^p X^{pm} + (g(X))^p \mod p$$
$$\equiv a(X^p)^m + g(X^p) \mod p$$
$$= h(X^p)$$

and we are done.

• Lemma 3.2.3 : Let p be a prime number and suppose that (n, p) = 1. Then, $X^n - 1$ does not have a multiple root in \mathbb{F}_p .

Proof. Suppose that q is a root of $X^n - 1 = 0$ over \mathbb{F}_p . Then $q \not\equiv 0 \mod p$ and we have

$$X^{n} - 1 \equiv (X - q)(X^{n-1} + qX^{n-2} + \dots + q^{n-1}) \mod p.$$

Substituting q in X in the right factor of the right hand side, and we obtain $nq^{n-1} \not\equiv 0 \mod p$ by the assumption.

• Proof of Theorem 3.2.1. Let ζ be a primitive *n*-th root of unity. Assume that $\Phi_n(X) = g(X)h(X)$ and that g is irreducible and $g(\zeta) = 0$. Choose a prime p such that (p, n) = 1. Then since $\Phi_n(\zeta^p) = 0$, either $g(\zeta^p) = 0$ or $h(\zeta^p) = 0$.

Suppose the later is the case. Then since $h(X^p) = 0$ has a root $x = \zeta$, $h(X^p)$ is divisible by g(X) and hence $h(X^p) = g(X)f(X)$. By Lemma 3.2.2, the left hand side equals $(h(X))^p \mod p$ so that h(X) and g(X) have a common root in \mathbb{F}_p . Then since $g(X)h(X) \equiv \Phi_n(X) \mod p$, $\Phi_n(X)$ has a multiple root in \mathbb{F}_p . On the other hand, $\Phi_n(X)$ is a factor of $X^n - 1$ over \mathbb{Q} , and $X^n - 1$ does not have a multiple root in \mathbb{F}_p by Lemma 3.2.3, and hence so does $\Phi_n(X)$ in \mathbb{F}_p . This is a contradiction,

and $g(\zeta^p) = 0$. In other word, we have shown that if a primitive root ζ is a root of g(X), then ζ^p is also a root of g(X) privided that (n, p) = 1.

The rest done by induction since all primitive roots are obtained from ζ_n by taking a prime power coprime to n successively.

- **3.3** $\mathbb{Q}(\cos\frac{2m\pi}{n})$
 - $\zeta_n^m + \zeta_n^{-m} = 2\cos\frac{2m\pi}{n}$.
 - A candidate for the irreducible polynomial of $\cos \frac{2M\pi}{n}$ over \mathbb{Q} :

$$\Psi_n(X) = \prod_{1 \le m \le n/2, (m,n)=1} \left(X - \cos \frac{2m\pi}{n} \right)$$

• Theorem 3.3.1 : Let n = 3 or $n \ge 5$, m a positive integer such that (n, m) = 1. Then, $\Psi_n(X)$ is irreducible over \mathbb{Q} . In particular, $\operatorname{Irr}_{\mathbb{Q}}(\cos \frac{2m\pi}{n}) = \Psi_n(X)$ and $[\mathbb{Q}(\cos \frac{2m\pi}{n}) : \mathbb{Q}] = \varphi(n)/2$.

Proof. Rewriting

$$\Phi_n(X) = \prod_{1 \le m \le n/2, (n,m)=1} (X - \zeta_n^m) (X - \zeta_n^{-m})$$
$$= \prod_{1 \le m \le n/2, (n,m)=1} (X^2 - 2X \cos \frac{2m\pi}{n} + 1),$$

we see that every fundamental symmetric polynomials of

$$\left\{\cos\frac{2m\pi}{n}; (n,m) = 1, 1 \le m \le n/2\right\}$$

has value in \mathbb{Q} . Thus $\Psi_n(X) \in \mathbb{Q}[X]$.

Suppose $\Psi_n(X)$ is not irreducible over \mathbb{Q} , then the factorization of $\Psi_n(X)$ over \mathbb{Q} implies a factorization of $\Phi_n(X)$ over \mathbb{Q} , which is a contradiction. \Box

3.4 Homework

1. Suppose $n = p_1^{e_1} p_2^{e_2} \cdots p_m^{e_m}$. Show

$$\varphi(n) = n \prod_{j} \left(1 - \frac{1}{p_j} \right).$$

- 2. Compute $\Phi_{105}(X)$, and find degree of which 2 appears as a coefficient.
- 3. Show that if n is odd ≥ 3 , then $\Phi_{2n}(X) = \Phi_n(-X)$
- 4. (1) Show $\sqrt{-7} \in \mathbb{Q}(\zeta_7)$. (2) Show $\sqrt{13} \in \mathbb{Q}(\zeta_{13})$.
- 5. Suppose p > 2 is prime. Then $\mathbb{Q}(\zeta_p)$ contains a real quadratic number field if and only if $p \equiv 1 \mod 4$.
- 6. Suppose n = 3 or $n \ge 5$, and show that the constant term of $\Psi_n(X)$ is

$$\begin{cases} 2^{-\varphi(n)/2}p & \text{if } n = 4p^e \ge 8 \text{ and } p \text{ prime,} \\ 2^{-\varphi(n)/2} & \text{otherwise.} \end{cases}$$

- 7. (1) Find the order of 2 in \mathbb{F}_{11} , and show that $(X^{11} 1)/(X 1) \in \mathbb{F}_2[X]$ is irreducible.
 - (2) Find the order of 2 in \mathbb{F}_{17} , and show that $(X^{17} 1)/(X 1) \in \mathbb{F}_2[X]$ factors into the product of two polynomials of degree 8.