Lecture 2

2 Field Extension

2.1 Extension

- What is a field extension K / k ?
- Extension K / k is finite if K is of finite dimensional as a vector space over k.
- Example : \mathbb{C} / \mathbb{R} finite, \mathbb{R} / \mathbb{Q} not finite.
- Simple extension $k(\alpha)$: The smallest subfield of K containing k and $\alpha \in K$.
- Example : $\mathbb{Q}(\sqrt{2})=\{a+b \sqrt{2} ; a, b \in \mathbb{Q}\}$.

Proof. \supset is obvious. To see \subset, show that the right hand side is a field.

- Multiple extension $k\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}\right): k\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n-1}\right)\left(\alpha_{n}\right)$ inductively.
- Example : $\mathbb{Q}(\sqrt{2}, \sqrt{3})=\mathbb{Q}(\sqrt{2}+\sqrt{3})$.

Proof. \supset is obvious. To see \subset, we let $\alpha=\sqrt{2}+\sqrt{3}$, then $\sqrt{2}=\frac{\alpha^{2}-1}{2 \alpha}$ and $\sqrt{3}=\frac{\alpha^{2}+1}{2 \alpha}$.

- Algebraic versus Transcendental : $\alpha \in K$ is algebraic over k if $1, \alpha, \alpha^{2}, \cdots, \alpha^{n}$ are linearly dependent over k for some n, and transcendental otherwise.
- The set of algebraic numbers over \mathbb{Q} is countable (Homework 1). Thus there are uncountably many transcendental numbers over \mathbb{Q} in \mathbb{C}.

2.2 Algebraic Extension

- Another formulation of algebraicity : α is algebraic if the evaluation map φ_{α} : $k[X] \rightarrow K$ defined by $\varphi_{\alpha}(f)=f(\alpha)$ has nontrivial kernel.
- The kernel of φ_{α} is generated by a single polynomial $p(X)$ since $k[X]$ is a principal ideal domain.
- The homomorphism theorem implies

$$
k[X] /(p(X)) \simeq k[\alpha],
$$

and since $k[\alpha]$ is an integral domain, $p(X)$ is irreducible over k.

- The irreducible polynomial (minimal polynomial) $\operatorname{Irr}_{k}(\alpha)$ of $\alpha \in K$: a monic (the leading coefficient is 1) polynomial generating $\operatorname{Ker} \varphi_{\alpha}$.
- Example : If $k=\mathbb{Q}, \alpha=\sqrt[n]{2}$, then $\operatorname{Irr}_{k}(\alpha)=X^{n}-2$.

Proof. Use Eisenstein's Criterion (see Homework 6)!

- Example : If $k=\mathbb{Q}(\sqrt{2}), \alpha=\sqrt[4]{2}$, then $\operatorname{Irr}_{k}(\alpha)=X^{2}-\sqrt{2}$.
- Algebraic extension $K / k:$ If any element $\alpha \in K$ is algebraic over k.
- Proposition 2.2.1 : If K / k is a finite extension, then K is algebraic over k.

Proof. If the dimension of K as a k vector space is n, then $1, \alpha, \alpha^{2}, \cdots, \alpha^{n}$ cannot be linearly independent for any nonzero $\alpha \in K$.

- Remark : The converse is not true. For example, the set of all algebraic numbers over \mathbb{Q} turns out to be a field (Homework 7) and an infinite algebraic extension over \mathbb{Q}.
- Degree of extension $[K: k]$: Dimension of K as a k vector space. It is either a positive integer or ∞.
- Proposition 2.2.2 : Let K / k and L / K be field extensions. Then, L is an extension of k and

$$
[L: k]=[L: K][K: k] .
$$

Proof. The first statement is routine to check. To see the identity, choose a basis $\left\{x_{i} \in L ; i \in I\right\}$ of L over K and a basis $\left\{y_{j} \in K ; j \in J\right\}$ of K over k, and show that $\left\{x_{i} y_{j} ; i \in I, j \in J\right\}$ forms a basis of L over k.

- Corollary 2.2.3 : L / k is finite if and only if both L / K and K / k are finite.
- Proposition 2.2.4 : Let $\alpha \in K$ be algebraic over k. Then $k[\alpha]=k(\alpha)$, and $k(\alpha)$ is finite over k. The degree $[k(\alpha), k]$ is equal to the degree of $\operatorname{Irr}_{k}(\alpha)$.

Proof. Let $p(X)$ denote $\operatorname{Irr}_{k}(\alpha)$ and $f(X) \in k[X]$ such that $f(\alpha) \neq 0$. Then since $(p, f)=1$, there exist $g, h \in k[X]$ such that

$$
g \cdot p+h \cdot f=1 .
$$

This implies that f is invertible in $k[\alpha]$, and hence $k[\alpha]=k(\alpha)$.
The rest is to show that $\left\{1, \alpha, \cdots, \alpha^{\operatorname{deg} p-1}\right\}$ forms a basis of $k(\alpha)$.
Suppose that $1, \alpha, \cdots, \alpha^{\operatorname{deg} p-1}$ are not linearly independent, then there is a polynomial g of degree $\leq \operatorname{deg} p-1$ such that $g(\alpha)=0$. This contradicts to the irreducibility of $p(X)$.

Choose $f(\alpha) \in k(\alpha)$ where $f \in k[X]$. Then there are unique polynomials $q, r \in k[X]$ with $\operatorname{deg} r(X)<\operatorname{deg} p(X)$ such that

$$
f(X)=q(X) p(X)+r(X)
$$

and $f(\alpha)=r(\alpha)$. Thus $1, \alpha, \cdots, \alpha^{\operatorname{deg} p-1}$ generate $k(\alpha)$.

2.3 Algebraic Closure

- Algebraically closed field K : If every polynomial in $K[X]$ of degree ≥ 1 has a root in K.
- Example : By the fundamental theorem of algebra, \mathbb{C} is algebraically closed.
- Theorem 2.3.1 : Let k be a field. Then there exits an algebraic extension $K^{\text {alg }}$ which is algebraically closed (called algebraic closure of k). $K^{\text {alg }}$ is unique up to isomorphism inducing the identity on k.

Proof. See some textbook, for example, S. Lang; Algebra, GTM Springer, 2002.

- Example : The algebraic closure of \mathbb{R} is \mathbb{C}.
- Example : The algebraic closure of \mathbb{Q} is the field of algebraic numbers.

2.4 Homework

1. Show that the set of algebraic numbers over \mathbb{Q} is countable.
2. Show that π and e are transcendental over \mathbb{Q}.
3. Let α be a root of the equation

$$
X^{3}+X^{2}+X+2=0
$$

Express $\left(\alpha^{2}+\alpha+1\right)\left(\alpha^{2}+\alpha\right)$ and $(\alpha-1)^{-1}$ in $\mathbb{Q}(\alpha)$ in the form

$$
a \alpha^{2}+b \alpha+c
$$

with $a, b, c \in \mathbb{Q}$.
4. Suppose α is algebraic over k of odd degree. Show that $K(\alpha)=k\left(\alpha^{2}\right)$.
5. Show that $\sqrt{2}+\sqrt{3}$ is algebraic of degree 4 over \mathbb{Q}.
6. Prove Eisenstein's criterion : Let $f(X)=a_{n} X^{n}+a_{n-1} X^{n-1}+\cdots+a_{1} X+a_{0}$ be a polynomial of integer coefficients. If there exists a prime p such that
(1) p divides each a_{j} for $j \neq n$,
(2) p does not divide a_{n}, and
(3) p^{2} does not divide a_{0},
then $f(X)$ is irreducible over \mathbb{Q}.
7. Show that the set of algebraic numbers over \mathbb{Q} forms a field.

