
= f(x̄;xf ) +
γ

2
∥xf − x̄∥22 + ⟨gf ,x− x̄⟩+ 1

2γ
∥gf∥22

≥ f(xf ) + ⟨gf ,x− x̄⟩+ 1

2γ
∥gf∥22,

where the last inequality is due to the fact that γ ≥ L.

We are ready to define our estimated sequence. Assume that fi ∈ S1,1
µ,L(R

n) (i = 1, 2, . . . ,m)

possible with µ = 0 (which means that fi ∈ F1,1
L (Rn)), x0 ∈ Q, and γ0 > 0. Define

ϕ0(x) := f(x0) +
γ0
2
∥x− x0∥22,

ϕk+1(x) := (1− αk)ϕk(x) + αk

[
f(xf (yk;L)) +

1

2L
∥gf (yk;L)∥22 + ⟨gf (yk;L),x− yk⟩

+
µ

2
∥x− yk∥22

]
,

for the sequences {αk}∞k=0 and {yk}∞k=0 which will be defined later.
Similarly to the previous subsection, we can prove that {ϕk(x)}∞k=0 can be written in the form

ϕk(x) = ϕ∗
k +

γk
2
∥x− vk∥22

for ϕ∗
0 = f(x0), v0 = x0:

γk+1 = (1− αk)γk + αkµ

vk+1 =
1

γk+1
[(1− αk)γkvk + αkµyk − αkgf (yk;L)],

ϕ∗
k+1 = (1− αk)ϕ

∗
k + αkf(xf (yk;L)) +

(
αk

2L
−

α2
k

2γk+1

)
∥gf (yk;L)∥22

+
αk(1− αk)γk

γk+1

(µ
2
∥yk − vk∥22 + ⟨gf (yk;L),vk − yk⟩

)
.

Now, ϕ∗
0 ≥ f(x0). Assuming that ϕ∗

k ≥ f(xk),

ϕ∗
k+1 ≥ (1− αk)f(xk) + αkf(xf (yk;L)) +

(
αk

2L
−

α2
k

2γk+1

)
∥gf (yk;L)∥22

+
αk(1− αk)γk

γk+1
⟨gf (yk;L),vk − yk⟩

≥ f(xf (yk;L)) +

(
1

2L
−

α2
k

2γk+1

)
∥gf (yk;L)∥22

+(1− αk)

⟨
gf (yk;L),

αkγk
γk+1

(vk − yk) + xk − yk

⟩
+

(1− αk)µ

2
∥xk − yk∥22,

where the last inequality follows from Theorem 11.6.
Therefore, if we choose

xk+1 = xf (yk;L),

Lα2
k = (1− αk)γk + αkµ,

γk+1 := Lα2
k,

yk =
1

γk + αkµ
(αkγkvk + γk+1xk),
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we obtain ϕ∗
k+1 ≥ f(xk+1) as desired.

Hereafter, we assume that L > µ to exclude the trivial case L = µ with finished in one iteration.

Constant Step Scheme I for the Optimal Gradient Method for the Min-Max
Problem

Step 0: Choose x0 ∈ Rn, α0 ∈ (0, 1) such that α0(α0L−µ)
1−α0

> 0, µ ≤ α0(α0L−µ)
1−α0

≤ L,

set y0 := x0, k := 0.
Step 1: Compute fi(yk) and f ′

i(yk) (i = 1, 2, . . . ,m).

Step 2: Set xk+1 := xf (yk;L) := arg min
x∈Q

[
max

i=1,2,...,m
fi(yk) + ⟨f ′

i(yk),x− yk⟩

+αk(αkL−µ)
2(1−αk)

∥x− yk∥22
]
.

Step 3: Compute αk+1 ∈ (0, 1) from the equation α2
k+1 = (1− αk+1)α

2
k +

µ
Lαk+1.

Step 4: Set βk := αk(1−αk)
α2
k+αk+1

.

Step 5: Set yk+1 := xk+1 + βk(xk+1 − xk), k := k + 1 and go to Step 1.

The rate of converge of this algorithm is exactly the same as the previous ones, but it is necessary
to solve a convex program in Step 2 for each iteration.

12 Applications for Optimization Problems with Convex Constraints

The techniques developed in the previous section can be applied to solve the following smooth
convex problem: 

minimize f0(x)
subject to fi(x) ≤ 0, (i = 1, 2, . . . ,m)

x ∈ Q,
(17)

where fi ∈ S1,1
µ,L(R

n) (i = 0, 1, . . . ,m) with µ > 0 and Q is a closed convex subset of Rn.
Let us introduce the parametric max-type function:

f(t;x) = max{f0(x)− t; f1(x), f2(x), . . . , fm(x)}, t ∈ R, x ∈ Q,

in order to define the function
f∗(t) = min

x∈Q
f(t;x). (18)

Since the components of the parametric max-type function f(t; ·) are strongly convex in x, (18) has
a unique solution x∗(t) for any t ∈ R due to Lemma 11.4.

Lemma 12.1 Let t∗ be an optimal value of the problem (17). Then

f∗(t) ≤ 0, for all t ≥ t∗,

f∗(t) > 0, for all t < t∗,

Proof: Let x∗ be a solution of (17). Consider first the case t ≥ t∗. Then

f∗(t) ≤ f(t;x∗) = max{f0(x∗)− t, f1(x
∗), f2(x

∗), . . . , fm(x∗)}
= max{t∗ − t, f1(x

∗), f2(x
∗), . . . , fm(x∗)} ≤ 0.

Now, let t < t∗. Additionally, suppose that f∗(t) ≤ 0. Then, there exists an y ∈ Q such that

f0(y) ≤ t < t∗, fi(y) ≤ 0, (i = 1, 2, . . . ,m).

Thus, t∗ can not be an optimal value of the problem.

We conclude that the root of the function f∗(t) corresponds to the optimal value of (17).
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Lemma 12.2 For any t1 < t2 and δ ≥ 0, we have

f∗(t1 − δ) ≥ f∗(t1) +
δ

t2 − t1
(f∗(t1)− f∗(t2)).

Proof: Let α = δ
t2−t1+δ ∈ [0, 1]. Then, the statement can be rewritten as:

f∗(t1 − δ) ≥
(
t2 − t1 + δ

t2 − t1

)
f∗(t1)−

δ

t2 − t1
f∗(t2)

δ

t2 − t1 + δ
f∗(t2) +

t2 − t1
t2 − t1 + δ

f∗(t1 − δ) ≥ f∗(t1)

αf∗(t2) + (1− α)f∗(t1 − δ) ≥ f∗(αt2 + (1− α)(t1 − δ)),

but the convexity of f∗(t) is a consequence of Theorem 6.5.

Please check “Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic Course,
(Kluwer Academic Publishers, Boston, 2004)” for further details.

12.1 Further Reading

There are other variants of the method which are considered more efficient in general. For instance,

• Yu. Nesterov, “Smooth minimization of non-smooth functions,” Mathematical Programming
103 (2005), pp. 127–152. The algorithm described in page 150. In there, there is a typo: τk
in c) must be αk+1.

• P. Tseng, “Approximation accuracy, gradient methods, and error bound for structured convex
optimization,” Mathematical Programming, Series B 125 (2010), pp. 125–295. The three
Accelerated Proximal Gradient (APG) methods, described in page 274, although it covers a
more general case, it can be applied to (15).

• Yu. Nesterov, “A method of solving a convex programming problem with convergence rate
OC(1/k2),” Soviet Mathematics Doklady, 27 (1984), pp. 372–376. This is the classical result.

The most interesting case is when f(x) is non-differentiable or it is a composite type of function.
Classical algorithms includes the one in the first reference or

• Yu. Nesterov, “Primal-dual subgradient methods for convex problems,” Mathematical Pro-
gramming, Series B, 120 (2009), pp. 221-259.

• A. Beck and M. Teboulle, “Mirror descent and nonlinear projected subgradient methods for
convex optimization,” Operations Research Letters, 31 (2003), pp. 167–175.
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