$$
\begin{aligned}
& =f\left(\overline{\boldsymbol{x}} ; \boldsymbol{x}_{f}\right)+\frac{\gamma}{2}\left\|\boldsymbol{x}_{f}-\overline{\boldsymbol{x}}\right\|_{2}^{2}+\left\langle\boldsymbol{g}_{f}, \boldsymbol{x}-\overline{\boldsymbol{x}}\right\rangle+\frac{1}{2 \gamma}\left\|\boldsymbol{g}_{f}\right\|_{2}^{2} \\
& \geq f\left(\boldsymbol{x}_{f}\right)+\left\langle\boldsymbol{g}_{f}, \boldsymbol{x}-\overline{\boldsymbol{x}}\right\rangle+\frac{1}{2 \gamma}\left\|\boldsymbol{g}_{f}\right\|_{2}^{2}
\end{aligned}
$$

where the last inequality is due to the fact that $\gamma \geq L$.
We are ready to define our estimated sequence. Assume that $f_{i} \in \mathcal{S}_{\mu, L}^{1,1}\left(\mathbb{R}^{n}\right)(i=1,2, \ldots, m)$ possible with $\mu=0$ (which means that $f_{i} \in \mathcal{F}_{L}^{1,1}\left(\mathbb{R}^{n}\right)$), $\boldsymbol{x}_{0} \in Q$, and $\gamma_{0}>0$. Define

$$
\begin{aligned}
\phi_{0}(\boldsymbol{x}):= & f\left(\boldsymbol{x}_{0}\right)+\frac{\gamma_{0}}{2}\left\|\boldsymbol{x}-\boldsymbol{x}_{0}\right\|_{2}^{2}, \\
\phi_{k+1}(\boldsymbol{x}):= & \left(1-\alpha_{k}\right) \phi_{k}(\boldsymbol{x})+\alpha_{k}\left[f\left(\boldsymbol{x}_{f}\left(\boldsymbol{y}_{k} ; L\right)\right)+\frac{1}{2 L}\left\|\boldsymbol{g}_{f}\left(\boldsymbol{y}_{k} ; L\right)\right\|_{2}^{2}+\left\langle\boldsymbol{g}_{f}\left(\boldsymbol{y}_{k} ; L\right), \boldsymbol{x}-\boldsymbol{y}_{k}\right\rangle\right. \\
& \left.+\frac{\mu}{2}\left\|\boldsymbol{x}-\boldsymbol{y}_{k}\right\|_{2}^{2}\right],
\end{aligned}
$$

for the sequences $\left\{\alpha_{k}\right\}_{k=0}^{\infty}$ and $\left\{\boldsymbol{y}_{k}\right\}_{k=0}^{\infty}$ which will be defined later.
Similarly to the previous subsection, we can prove that $\left\{\phi_{k}(\boldsymbol{x})\right\}_{k=0}^{\infty}$ can be written in the form

$$
\phi_{k}(\boldsymbol{x})=\phi_{k}^{*}+\frac{\gamma_{k}}{2}\left\|\boldsymbol{x}-\boldsymbol{v}_{k}\right\|_{2}^{2}
$$

for $\phi_{0}^{*}=f\left(\boldsymbol{x}_{0}\right), \boldsymbol{v}_{0}=\boldsymbol{x}_{0}$:

$$
\begin{aligned}
\gamma_{k+1}= & \left(1-\alpha_{k}\right) \gamma_{k}+\alpha_{k} \mu \\
\boldsymbol{v}_{k+1}= & \frac{1}{\gamma_{k+1}}\left[\left(1-\alpha_{k}\right) \gamma_{k} \boldsymbol{v}_{k}+\alpha_{k} \mu \boldsymbol{y}_{k}-\alpha_{k} \boldsymbol{g}_{f}\left(\boldsymbol{y}_{k} ; L\right)\right] \\
\phi_{k+1}^{*}= & \left(1-\alpha_{k}\right) \phi_{k}^{*}+\alpha_{k} f\left(\boldsymbol{x}_{f}\left(\boldsymbol{y}_{k} ; L\right)\right)+\left(\frac{\alpha_{k}}{2 L}-\frac{\alpha_{k}^{2}}{2 \gamma_{k+1}}\right)\left\|\boldsymbol{g}_{f}\left(\boldsymbol{y}_{k} ; L\right)\right\|_{2}^{2} \\
& +\frac{\alpha_{k}\left(1-\alpha_{k}\right) \gamma_{k}}{\gamma_{k+1}}\left(\frac{\mu}{2}\left\|\boldsymbol{y}_{k}-\boldsymbol{v}_{k}\right\|_{2}^{2}+\left\langle\boldsymbol{g}_{f}\left(\boldsymbol{y}_{k} ; L\right), \boldsymbol{v}_{k}-\boldsymbol{y}_{k}\right\rangle\right)
\end{aligned}
$$

Now, $\phi_{0}^{*} \geq f\left(\boldsymbol{x}_{0}\right)$. Assuming that $\phi_{k}^{*} \geq f\left(\boldsymbol{x}_{k}\right)$,

$$
\begin{aligned}
\phi_{k+1}^{*} \geq & \left(1-\alpha_{k}\right) f\left(\boldsymbol{x}_{k}\right)+\alpha_{k} f\left(\boldsymbol{x}_{f}\left(\boldsymbol{y}_{k} ; L\right)\right)+\left(\frac{\alpha_{k}}{2 L}-\frac{\alpha_{k}^{2}}{2 \gamma_{k+1}}\right)\left\|\boldsymbol{g}_{f}\left(\boldsymbol{y}_{k} ; L\right)\right\|_{2}^{2} \\
& +\frac{\alpha_{k}\left(1-\alpha_{k}\right) \gamma_{k}}{\gamma_{k+1}}\left\langle\boldsymbol{g}_{f}\left(\boldsymbol{y}_{k} ; L\right), \boldsymbol{v}_{k}-\boldsymbol{y}_{k}\right\rangle \\
\geq & f\left(\boldsymbol{x}_{f}\left(\boldsymbol{y}_{k} ; L\right)\right)+\left(\frac{1}{2 L}-\frac{\alpha_{k}^{2}}{2 \gamma_{k+1}}\right)\left\|\boldsymbol{g}_{f}\left(\boldsymbol{y}_{k} ; L\right)\right\|_{2}^{2} \\
& +\left(1-\alpha_{k}\right)\left\langle\boldsymbol{g}_{f}\left(\boldsymbol{y}_{k} ; L\right), \frac{\alpha_{k} \gamma_{k}}{\gamma_{k+1}}\left(\boldsymbol{v}_{k}-\boldsymbol{y}_{k}\right)+\boldsymbol{x}_{k}-\boldsymbol{y}_{k}\right\rangle+\frac{\left(1-\alpha_{k}\right) \mu}{2}\left\|\boldsymbol{x}_{k}-\boldsymbol{y}_{k}\right\|_{2}^{2}
\end{aligned}
$$

where the last inequality follows from Theorem 11.6.
Therefore, if we choose

$$
\begin{aligned}
\boldsymbol{x}_{k+1} & =\boldsymbol{x}_{f}\left(\boldsymbol{y}_{k} ; L\right) \\
L \alpha_{k}^{2} & =\left(1-\alpha_{k}\right) \gamma_{k}+\alpha_{k} \mu \\
\gamma_{k+1} & :=L \alpha_{k}^{2} \\
\boldsymbol{y}_{k} & =\frac{1}{\gamma_{k}+\alpha_{k} \mu}\left(\alpha_{k} \gamma_{k} \boldsymbol{v}_{k}+\gamma_{k+1} \boldsymbol{x}_{k}\right)
\end{aligned}
$$

we obtain $\phi_{k+1}^{*} \geq f\left(\boldsymbol{x}_{k+1}\right)$ as desired.
Hereafter, we assume that $L>\mu$ to exclude the trivial case $L=\mu$ with finished in one iteration.

| Constant Step Scheme I for the Optimal Gradient Method for the Min-Max |
| :--- | :--- |
| Problem |$|$| Step 0: | Choose $\boldsymbol{x}_{0} \in \mathbb{R}^{n}, \alpha_{0} \in(0,1)$ such that $\frac{\alpha_{0}\left(\alpha_{0} L-\mu\right)}{1-\alpha_{0}}>0, \mu \leq \frac{\alpha_{0}\left(\alpha_{0} L-\mu\right)}{1-\alpha_{0}} \leq L$, |
| ---: | :--- |
| | set $\boldsymbol{y}_{0}:=\boldsymbol{x}_{0}, k:=0$. |

Step 3: Compute $\alpha_{k+1} \in(0,1)$ from the equation $\alpha_{k+1}^{2}=\left(1-\alpha_{k+1}\right) \alpha_{k}^{2}+\frac{\mu}{L} \alpha_{k+1}$.
Step 4: Set $\beta_{k}:=\frac{\alpha_{k}\left(1-\alpha_{k}\right)}{\alpha_{k}^{2}+\alpha_{k+1}}$.
Step 5: Set $\boldsymbol{y}_{k+1}:=\boldsymbol{x}_{k+1}+\beta_{k}\left(\boldsymbol{x}_{k+1}-\boldsymbol{x}_{k}\right), k:=k+1$ and go to Step 1.
The rate of converge of this algorithm is exactly the same as the previous ones, but it is necessary to solve a convex program in Step 2 for each iteration.

12 Applications for Optimization Problems with Convex Constraints

The techniques developed in the previous section can be applied to solve the following smooth convex problem:

$$
\begin{cases}\operatorname{minimize} & f_{0}(\boldsymbol{x}) \tag{17}\\ \text { subject to } & f_{i}(\boldsymbol{x}) \leq 0, \quad(i=1,2, \ldots, m) \\ & \boldsymbol{x} \in Q,\end{cases}
$$

where $f_{i} \in \mathcal{S}_{\mu, L}^{1,1}\left(\mathbb{R}^{n}\right)(i=0,1, \ldots, m)$ with $\mu>0$ and Q is a closed convex subset of \mathbb{R}^{n}.
Let us introduce the parametric max-type function:

$$
f(t ; \boldsymbol{x})=\max \left\{f_{0}(\boldsymbol{x})-t ; f_{1}(\boldsymbol{x}), f_{2}(\boldsymbol{x}), \ldots, f_{m}(\boldsymbol{x})\right\}, \quad t \in \mathbb{R}, \quad \boldsymbol{x} \in Q,
$$

in order to define the function

$$
\begin{equation*}
f^{*}(t)=\min _{\boldsymbol{x} \in Q} f(t ; \boldsymbol{x}) . \tag{18}
\end{equation*}
$$

Since the components of the parametric max-type function $f(t ; \cdot)$ are strongly convex in \boldsymbol{x}, (18) has a unique solution $\boldsymbol{x}^{*}(t)$ for any $t \in \mathbb{R}$ due to Lemma 11.4.

Lemma 12.1 Let t^{*} be an optimal value of the problem (17). Then

$$
\begin{aligned}
& f^{*}(t) \leq 0, \text { for all } t \geq t^{*}, \\
& f^{*}(t)>0, \\
& \text { for all } t<t^{*},
\end{aligned}
$$

Proof: Let \boldsymbol{x}^{*} be a solution of (17). Consider first the case $t \geq t^{*}$. Then

$$
\begin{aligned}
f^{*}(t) & \leq f\left(t ; \boldsymbol{x}^{*}\right)=\max \left\{f_{0}\left(\boldsymbol{x}^{*}\right)-t, f_{1}\left(\boldsymbol{x}^{*}\right), f_{2}\left(\boldsymbol{x}^{*}\right), \ldots, f_{m}\left(\boldsymbol{x}^{*}\right)\right\} \\
& =\max \left\{t^{*}-t, f_{1}\left(\boldsymbol{x}^{*}\right), f_{2}\left(\boldsymbol{x}^{*}\right), \ldots, f_{m}\left(\boldsymbol{x}^{*}\right)\right\} \leq 0 .
\end{aligned}
$$

Now, let $t<t^{*}$. Additionally, suppose that $f^{*}(t) \leq 0$. Then, there exists an $\boldsymbol{y} \in Q$ such that

$$
f_{0}(\boldsymbol{y}) \leq t<t^{*}, \quad f_{i}(\boldsymbol{y}) \leq 0, \quad(i=1,2, \ldots, m)
$$

Thus, t^{*} can not be an optimal value of the problem.
We conclude that the root of the function $f^{*}(t)$ corresponds to the optimal value of (17).

Lemma 12.2 For any $t_{1}<t_{2}$ and $\delta \geq 0$, we have

$$
f^{*}\left(t_{1}-\delta\right) \geq f^{*}\left(t_{1}\right)+\frac{\delta}{t_{2}-t_{1}}\left(f^{*}\left(t_{1}\right)-f^{*}\left(t_{2}\right)\right) .
$$

Proof: Let $\alpha=\frac{\delta}{t_{2}-t_{1}+\delta} \in[0,1]$. Then, the statement can be rewritten as:

$$
\begin{aligned}
f^{*}\left(t_{1}-\delta\right) & \geq\left(\frac{t_{2}-t_{1}+\delta}{t_{2}-t_{1}}\right) f^{*}\left(t_{1}\right)-\frac{\delta}{t_{2}-t_{1}} f^{*}\left(t_{2}\right) \\
\frac{\delta}{t_{2}-t_{1}+\delta} f^{*}\left(t_{2}\right)+\frac{t_{2}-t_{1}}{t_{2}-t_{1}+\delta} f^{*}\left(t_{1}-\delta\right) & \geq f^{*}\left(t_{1}\right) \\
\alpha f^{*}\left(t_{2}\right)+(1-\alpha) f^{*}\left(t_{1}-\delta\right) & \geq f^{*}\left(\alpha t_{2}+(1-\alpha)\left(t_{1}-\delta\right)\right)
\end{aligned}
$$

but the convexity of $f^{*}(t)$ is a consequence of Theorem 6.5.
Please check "Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic Course, (Kluwer Academic Publishers, Boston, 2004)" for further details.

12.1 Further Reading

There are other variants of the method which are considered more efficient in general. For instance,

- Yu. Nesterov, "Smooth minimization of non-smooth functions," Mathematical Programming 103 (2005), pp. 127-152. The algorithm described in page 150. In there, there is a typo: τ_{k} in c) must be α_{k+1}.
- P. Tseng, "Approximation accuracy, gradient methods, and error bound for structured convex optimization," Mathematical Programming, Series B 125 (2010), pp. 125-295. The three Accelerated Proximal Gradient (APG) methods, described in page 274, although it covers a more general case, it can be applied to (15).
- Yu. Nesterov, "A method of solving a convex programming problem with convergence rate OC $\left(1 / k^{2}\right)$," Soviet Mathematics Doklady, 27 (1984), pp. 372-376. This is the classical result.

The most interesting case is when $f(\boldsymbol{x})$ is non-differentiable or it is a composite type of function. Classical algorithms includes the one in the first reference or

- Yu. Nesterov, "Primal-dual subgradient methods for convex problems," Mathematical Programming, Series B, 120 (2009), pp. 221-259.
- A. Beck and M. Teboulle, "Mirror descent and nonlinear projected subgradient methods for convex optimization," Operations Research Letters, 31 (2003), pp. 167-175.

