_ 0 _ _ 1
= f(z;zy) + §||33f —z|3 + (gpx—x)+ ﬁlgfllé
_ 1
> flxg) +{gpz—2)+ 5\|ng%,

where the last inequality is due to the fact that v > L. 1
We are ready to define our estimated sequence. Assume that f; € SilL(R”) (i=1,2,...,m)
possible with ¢ = 0 (which means that f; € FlL’l(R”)), xo € Q, and 9 > 0. Define

do(@) = fl@o)+ 2l — ol
ry1(x) = (1 —ap)dr(x) + ap [f(wf(yk; L)) + i!lgf(yk; D)3+ (g;(yx; L), @ — yy,)
+lle - yil3] .

for the sequences {ay}32, and {y;}72, which will be defined later.
Similarly to the previous subsection, we can prove that {¢(x)}32, can be written in the form

* Yk
() = ¢, + ?Hﬂﬁ — |3

for ¢¢ = f(x0), vo = xo:

Ye+r1 = (1 — o)y + ogp
1
Vip1 = — (1 — ag) vk + arpyy — arg r(yi; L)),
Ve+1
i = (1= o+ aud oyl D)+ (5 225 g i D3
= — Qf AL J\ T YL; 5 gr\Yg;
k+1 k Yk 2L 27pm F\Yk 2
ap(l — ap)ye (1
o ST (B — w13+ {5 (s L) ok — wi) )
Vk+1

Now, ¢§ > f(xo). Assuming that ¢} > f(xx),

G 2 (- a0f@) +auf(estus L) + (55 - 52 ) gy D)

o (1 — ag)v
+—( ) (95(Yp; L), vp — yg)
Ve+1

1 a?
P )+ (57~ 5o ) o DI

Vv

AEYk 1— ol
+0 ) (g D). 2% (o ) - i) + S o - i,

where the last inequality follows from Theorem 11.6.
Therefore, if we choose

xry1 = xp(yp L),
Laj = (1—op)y + okp,
Vitl = La%,
1
Y = ——(%VkVk T Ve+1Tk),
F V& + Oék,u( +1%%)
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we obtain ¢y, > f(zk11) as desired.
Hereafter, we assume that L > p to exclude the trivial case L = p with finished in one iteration.

Constant Step Scheme I for the Optimal Gradient Method for the Min-Max
Problem
Step 0: Choose g € R", ag € (0,1) such that 0‘0(1‘107660_“) >0, p < %io_“) <L,
set yg := o, k :=0.
Step 1: Compute f;(y,) and f/(y;) (i =1,2,...,m).

Step 2:  Set xpy1 = xy(yy; L) 1= arg }};‘25 [._max fily) + {fi(yp), & — yp)

i=1,2,...,

L—
ol | — g 3]

Step 3: Compute aj41 € (0,1) from the equation O‘i+1 =(1- ak+1)ai + Fagqa.
Step 4: Set B := 2sU=ax)

3 .
ap+ogy1

Step 5: Set y;,1 = xpt1 + Se(Try1 — ), k:=k + 1 and go to Step 1.

The rate of converge of this algorithm is exactly the same as the previous ones, but it is necessary
to solve a convex program in Step 2 for each iteration.

12 Applications for Optimization Problems with Convex Constraints

The techniques developed in the previous section can be applied to solve the following smooth
convex problem:
minimize  fp(x)
subject to  fi(x) <0, (i=1,2,...,m) (17)
€T E Q?

where f; € SilL(R”) (t=0,1,...,m) with 4 > 0 and @ is a closed convex subset of R".
Let us introduce the parametric max-type function:

ft;z) = max{fo(x) — t; fi(z), fo(x), ..., fm(x)}, tER, xT€EQ,
in order to define the function

fr(t) = min ftz). (18)

Since the components of the parametric max-type function f(¢;-) are strongly convex in &, (18) has
a unique solution x*(¢) for any ¢ € R due to Lemma 11.4.

Lemma 12.1 Let t* be an optimal value of the problem (17). Then

fr(t) <0, forall t>t"
f5(t) >0, forall t<t*,

Proof:  Let x* be a solution of (17). Consider first the case t > t*. Then

) < fha") =max{fo(x®) — ¢, fi(@"), f2(27), ..., fm(27)}
= max{t" —t, fi(x"), fa(x"),..., fm(x*)} <O0.

Now, let t < t*. Additionally, suppose that f*(¢) < 0. Then, there exists an y € @ such that

foly) <t<t*, fi(y) <0, (i=1,2,...,m).

Thus, t* can not be an optimal value of the problem. I

We conclude that the root of the function f*(t) corresponds to the optimal value of (17).
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Lemma 12.2 For any t; < to and é > 0, we have

frtr=0) = f(ta) + (f*(t) = f7(t2))-

to — 11

Proof: Let a= ﬁ € [0,1]. Then, the statement can be rewritten as:

" to —t1 + 1) " 1) "
_ > e e _
frti=6) = < Pa— > Fit) = g (%)
0 . lo—t1 ., *

- R _ >

P— s (t2) + P— 5! (th—=6) = f(t)

aft(t2) + (1 —a)f*(th=06) = [ ata+ (1 —a)(t1 —9)),
but the convexity of f*(¢) is a consequence of Theorem 6.5. 1

Please check “Y. Nesterov, Introductory Lectures on Convexr Optimization: A Basic Course,
(Kluwer Academic Publishers, Boston, 2004)” for further details.

12.1 Further Reading

There are other variants of the method which are considered more efficient in general. For instance,

e Yu. Nesterov, “Smooth minimization of non-smooth functions,” Mathematical Programming
103 (2005), pp. 127-152. The algorithm described in page 150. In there, there is a typo: 7%
in ¢) must be agy.

e P. Tseng, “Approximation accuracy, gradient methods, and error bound for structured convex
optimization,” Mathematical Programming, Series B 125 (2010), pp. 125-295. The three
Accelerated Proximal Gradient (APG) methods, described in page 274, although it covers a
more general case, it can be applied to (15).

e Yu. Nesterov, “A method of solving a convex programming problem with convergence rate
OC(1/k*),” Soviet Mathematics Doklady, 27 (1984), pp. 372-376. This is the classical result.

The most interesting case is when f(«) is non-differentiable or it is a composite type of function.
Classical algorithms includes the one in the first reference or

e Yu. Nesterov, “Primal-dual subgradient methods for convex problems,” Mathematical Pro-
gramming, Series B, 120 (2009), pp. 221-2509.

e A. Beck and M. Teboulle, “Mirror descent and nonlinear projected subgradient methods for
convex optimization,” Operations Research Letters, 31 (2003), pp. 167-175.
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