
Constant Step Scheme II for the Optimal Gradient Method

Step 0: Choose x0 ∈ Rn, set y0 := x0 and k := 0.
Step 1: Compute f ′(yk).
Step 2: Set xk+1 := yk − 1

Lf
′(yk).

Step 3: Set yk+1 := xk+1 +
√
L−√

µ√
L+

√
µ
(xk+1 − xk), k := k + 1 and go to Step 1.

You can find a variation of this method for instance in: C. C. Gonzaga and E. W. Karas, “Fine
tuning Nesterov’s steepest descent algorithm for differentiable convex programming,” Mathematical
Programming, 138 (2013), pp. 141–166.

9.1 Exercises

1. Complete the proof of Lemma 9.3.

2. We want to justify the Constant Step Scheme I of the Optimal Gradient Method. This is
a particular case of the General Scheme for the Optimal Gradient Method for the following
choice:

γk+1 := Lα2
k = (1− αk)γk + αkµ

yk =
αkγkvk + γk+1xk

γk + αkµ

xk+1 = yk −
1

L
f ′(yk)

vk+1 =
(1− αk)γkvk + αkµyk − αkf

′(yk)

γk+1
.

(a) Show that vk+1 = xk +
1
αk

(xk+1 − xk).

(b) Show that yk+1 = xk+1 + βk(xk+1 − xk) for βk =
αk+1γk+1(1−αk)
αk(γk+1+αk+1µ)

.

(c) Show that βk = αk(1−αk)
α2
k+αk+1

.

(d) Explain why α2
k+1 = (1− αk+1)α

2
k +

µ
Lαk+1.

10 Extension of the Optimal Gradient Method (First-Order Method,
Accelerated Gradient Method, Fast Gradient Method) for “Sim-
ple” Convex Sets

We are interested now to solve the following problem:{
minimize f(x)
subject to x ∈ Q

(15)

where f : Rn → R and Q is a closed convex subset of Rn, simple enough to have an easy projection
onto it, e.g., positive orthant, n dimensional box, simplex, Euclidean ball, etc.

Lemma 10.1 Let f ∈ F1(Rn) and Q be a closed convex set. The point x∗ is a solution of (15) if
and only if

⟨f ′(x∗),x− x∗⟩ ≥ 0, ∀x ∈ Q.

41



Proof:
Indeed, if the inequality is true,

f(x) ≥ f(x∗) + ⟨f ′(x∗),x− x∗⟩ ≥ f(x∗) ∀x ∈ Q.

For the converse, let x∗ be an optimal solution of the minimization problem (15). Assume
by contradiction that there is a x ∈ Q such that ⟨f ′(x∗),x − x∗⟩ < 0. Consider the function
ϕ(α) = f(x∗+α(x−x∗)) for α ∈ [0, 1]. Since x∗,x ∈ Q and Q is a convex set, x∗+α(x−x∗) ∈ Q,
for ∀α ∈ [0, 1]. Then, ϕ(0) = f(x∗) and ϕ′(0) = ⟨f ′(x∗),x − x∗⟩ < 0. Therefore, for α > 0 small
enough, we have

f(x∗ + α(x− x∗)) = ϕ(α) < ϕ(0) = f(x∗)

which is a contradiction.

Lemma 10.2 Let f ∈ S1
µ(Rn) with µ > 0, and Q be a closed convex set. Then there exists a

unique solution x∗ for the problem (15).

Proof:
Left for exercise.

Definition 10.3 Let f ∈ C1(Rn), Q a closed convex set, x̄ ∈ Rn, and γ > 0. Denote by

xQ(x̄; γ) := arg min
y∈Q

[
f(x̄) + ⟨f ′(x̄),y − x̄⟩+ γ

2
∥y − x̄∥22

]
,

gQ(x̄; γ) := γ(x̄− xQ(x̄; γ)).

We call gQ(x̄; γ) the gradient mapping of f on Q. Observe that due to Lemma 10.2, xQ(x̄; γ)
exists and it is uniquely defined.

In the case Q ≡ Rn, notice that xQ(x̄; γ) = x̄ − 1
γ f

′(x̄) and gQ(x̄; γ) = f ′(x̄). Therefore, they

take the roles of xk+1 and f ′(yk) in the Constant Step Scheme I for the Optimal Gradient Method,
respectively.

Theorem 10.4 Let f ∈ S1,1
µ,L(R

n), γ ≥ L, γ > 0, Q a closed convex set, and x̄ ∈ Rn. Then

f(x) ≥ f(xQ(x̄; γ)) + ⟨gQ(x̄; γ),x− x̄⟩+ 1

2γ
∥gQ(x̄; γ)∥22 +

µ

2
∥x− x̄∥22, ∀x ∈ Q.

Proof:
Let us use the following notation xQ := xQ(x̄; γ) and gQ := gQ(x̄; γ). Consider ϕ(x) :=

f(x̄) + ⟨f ′(x̄),x− x̄⟩+ γ
2∥x− x̄∥22.

Then ϕ′(x) = f ′(x̄) + γ(x− x̄). Therefore ∀x ∈ Q, we have

⟨ϕ′(xQ),x− xQ⟩ = ⟨f ′(x̄) + γ(xQ − x̄),x− xQ⟩ = ⟨f ′(x̄)− gQ,x− xQ⟩ ≥ 0

due to Lemma 10.1.
Hence, ∀x ∈ Q,

f(x)− µ

2
∥x− x̄∥22 ≥ f(x̄) + ⟨f ′(x̄),x− x̄⟩

= f(x̄) + ⟨f ′(x̄),x− xQ⟩+ ⟨f ′(x̄),xQ − x̄⟩
≥ f(x̄) + ⟨gQ,x− xQ⟩+ ⟨f ′(x̄),xQ − x̄⟩

= ϕ(xQ)−
γ

2
∥xQ − x̄∥22 + ⟨gQ,x− xQ⟩
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= ϕ(xQ)−
1

2γ
∥gQ∥22 + ⟨gQ,x− xQ⟩

= ϕ(xQ)−
1

2γ
∥gQ∥22 + ⟨gQ, x̄− xQ⟩+ ⟨gQ,x− x̄⟩

= ϕ(xQ) +
1

2γ
∥gQ∥22 + ⟨gQ,x− x̄⟩.

Since γ ≥ L, we have ϕ(xQ) ≥ f(xQ) from Lemma 3.4, and the result follows.

We are ready to define our estimated sequence. Assume that f ∈ S1,1
µ,L(R

n) possible with µ = 0

(which means that f ∈ F1,1
L (Rn)), x0 ∈ Q, and γ0 > 0. Define

ϕ0(x) := f(x0) +
γ0
2
∥x− x0∥22,

ϕk+1(x) := (1− αk)ϕk(x) + αk

[
f(xQ(yk;L)) +

1

2L
∥gQ(yk;L)∥22 + ⟨gQ(yk;L),x− yk⟩

+
µ

2
∥x− yk∥22

]
,

for the sequences {αk}∞k=0 and {yk}∞k=0 which will be defined later.
Similarly to the previous subsection, we can prove that {ϕk(x)}∞k=0 can be written in the form

ϕk(x) = ϕ∗
k +

γk
2
∥x− vk∥22

for ϕ∗
0 = f(x0), v0 = x0:

γk+1 = (1− αk)γk + αkµ

vk+1 =
1

γk+1
[(1− αk)γkvk + αkµyk − αkgQ(yk;L)],

ϕ∗
k+1 = (1− αk)ϕ

∗
k + αkf(xQ(yk;L)) +

(
αk

2L
−

α2
k

2γk+1

)
∥gQ(yk;L)∥22

+
αk(1− αk)γk

γk+1

(µ
2
∥yk − vk∥22 + ⟨gQ(yk;L),vk − yk⟩

)
.

Now, ϕ∗
0 ≥ f(x0). Assuming that ϕ∗

k ≥ f(xk),

ϕ∗
k+1 ≥ (1− αk)f(xk) + αkf(xQ(yk;L)) +

(
αk

2L
−

α2
k

2γk+1

)
∥gQ(yk;L)∥22

+
αk(1− αk)γk

γk+1
⟨gQ(yk;L),vk − yk⟩

≥ f(xQ(yk;L)) +

(
1

2L
−

α2
k

2γk+1

)
∥gQ(yk;L)∥22

+(1− αk)

⟨
gQ(yk;L),

αkγk
γk+1

(vk − yk) + xk − yk

⟩
+

(1− αk)µ

2
∥xk − yk∥22,

where the last inequality follows from Theorem 10.4.
Therefore, if we choose

xk+1 = xQ(yk;L),

Lα2
k = (1− αk)γk + αkµ,

γk+1 := Lα2
k,

yk =
1

γk + αkµ
(αkγkvk + γk+1xk),
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we obtain ϕ∗
k+1 ≥ f(xk+1) as desired.

Hereafter, we assume that L > µ to exclude the trivial case L = µ with finished in one iteration.

Constant Step Scheme I for the Optimal Gradient Method over the Simple Set Q

Step 0: Choose x0 ∈ Rn, α0 ∈ (0, 1) such that α0(α0L−µ)
1−α0

> 0, µ ≤ α0(α0L−µ)
1−α0

≤ L,

set y0 := x0, k := 0.
Step 1: Compute f(yk) and f ′(yk).

Step 2: Set xk+1 := xQ(yk;L) := arg min
x∈Q

[
f(yk) + ⟨f ′(yk),x− yk⟩+

αk(αkL− µ)

2(1− αk)
∥x− yk∥22

]
.

Step 3: Compute αk+1 ∈ (0, 1) from the equation α2
k+1 = (1− αk+1)α

2
k +

µ
Lαk+1.

Step 4: Set βk := αk(1−αk)
α2
k+αk+1

.

Step 5: Set yk+1 := xk+1 + βk(xk+1 − xk), k := k + 1 and go to Step 1.

The rate of converge of this algorithm is exactly the same as the previous ones, but it is necessary
to solve a convex program in Step 2 for each iteration.

10.1 Exercises

1. Prove Lemma 10.2

11 Extension for the Min-Max Problem

Given fi ∈ S1,1,
µ,L(R

n) (i = 1, 2, . . . ,m), we define the following function f : Rn → R,

f(x) := max
1≤i≤m

fi(x) for x ∈ Rn.

This function is non-differentiable in general, but we will see that the method discussed so far can
be easily adapted for the following min-max-type convex optimization problem.{

minimize f(x)
subject to x ∈ Q,

(16)

where Q is a closed convex set with a “simple” structure, and f(x) is defined as above.
For a given x̄ ∈ Rn, let us define the following linearization of f(x) at x̄.

f(x̄;x) := max
1≤i≤m

[
fi(x̄) + ⟨f ′

i(x̄),x− x̄⟩
]
, for x ∈ Rn.

Lemma 11.1 Let fi ∈ S1,1
µ,L(R

n) (i = 1, 2, . . . ,m). For x ∈ Rn, we have

f(x) ≥ f(x̄;x) +
µ

2
∥x− x̄∥22,

f(x) ≤ f(x̄;x) +
L

2
∥x− x̄∥22.

Proof:
It follows from the properties of fi ∈ S1,1

µ,L(R
n).

Theorem 11.2 A point x∗ ∈ Q is an optimal solution of (16), if and only if

f(x∗;x) ≥ f(x∗;x∗) = f(x∗), ∀x ∈ Q.
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Proof:
It can be proved similarly to Lemma 10.1.

Corollary 11.3 Let x∗ be a minimum of a max-type function f(x) over the set Q. If f ∈ S1
µ(Rn),

then,

f(x) ≥ f(x∗) +
µ

2
∥x− x∗∥22, ∀x ∈ Q.

Proof:
From Lemma 11.1 and Theorem 11.2, we have ∀x ∈ Q,

f(x) ≥ f(x∗;x) +
µ

2
∥x− x∗∥22

≥ f(x∗;x∗) +
µ

2
∥x− x∗∥22 = f(x∗) +

µ

2
∥x− x∗∥22.

Lemma 11.4 Let fi ∈ S1
µ(Rn) for (i = 1, 2, . . . ,m) with µ > 0 and Q be a closed convex set. Then

there is a unique solution x∗ for the problem (16).

Proof:
Again, the proof is similar to the one of Lemma 10.2.

Definition 11.5 Let fi ∈ C1(Rn) (i = 1, 2, . . . ,m), Q a closed convex set, x̄ ∈ Rn, and γ > 0.
Denote by

xf (x̄; γ) := arg min
y∈Q

[
f(x̄;y) +

γ

2
∥y − x̄∥22

]
,

gf (x̄; γ) := γ(x̄− xf (x̄; γ)).

We call gf (x̄; γ) the gradient mapping of max-type function f on Q. Observe that due to
Lemma 11.4, xf (x̄; γ) exists and it is uniquely defined since fi(x̄) + ⟨f ′

i(x̄),x− x̄⟩ + γ
2∥y − x̄∥22 ∈

S1
µ(Rn) (i = 1, 2, . . . ,m).

Notice also that when m = 1, the above definition coincides with Definition 10.3.

Theorem 11.6 Let fi ∈ S1,1
µ,L(R

n) (i = 1, 2, . . . ,m), γ ≥ L, γ > 0, Q a closed convex set, and
x̄ ∈ Rn. Then

f(x) ≥ f(xf (x̄; γ)) + ⟨gf (x̄; γ),x− x̄⟩+ 1

2γ
∥gf (x̄; γ)∥22 +

µ

2
∥x− x̄∥22, ∀x ∈ Q.

Proof: Let us use the following notation: xf := xf (x̄; γ) and gf := gf (x̄; γ).
From Lemma 11.1 and Corollary 11.3 (taking f(x) in there as f(x̄;x) + γ

2∥x − x̄∥22), we have
∀x ∈ Q,

f(x)− µ

2
∥x− x̄∥22 ≥ f(x̄;x)

= f(x̄;x) +
γ

2
∥x− x̄∥22 −

γ

2
∥x− x̄∥22

≥ f(x̄;xf ) +
γ

2
∥xf − x̄∥22 +

γ

2
∥x− xf∥22 −

γ

2
∥x− x̄∥22

= f(x̄;xf ) +
γ

2
∥xf − x̄∥22 +

γ

2
⟨x̄− xf , 2x− xf − x̄⟩

= f(x̄;xf ) +
γ

2
∥xf − x̄∥22 +

γ

2
⟨x̄− xf , 2(x− x̄) + x̄− xf ⟩
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