Constant Step Scheme II for the Optimal Gradient Method

Step 0: Choose $\boldsymbol{x}_{0} \in \mathbb{R}^{n}$, set $\boldsymbol{y}_{0}:=\boldsymbol{x}_{0}$ and $k:=0$.
Step 1: Compute $f^{\prime}\left(\boldsymbol{y}_{k}\right)$.
Step 2: Set $\boldsymbol{x}_{k+1}:=\boldsymbol{y}_{k}-\frac{1}{L} f^{\prime}\left(\boldsymbol{y}_{k}\right)$.
Step 3: Set $\boldsymbol{y}_{k+1}:=\boldsymbol{x}_{k+1}+\frac{\sqrt{L}-\sqrt{\mu}}{\sqrt{L}+\sqrt{\mu}}\left(\boldsymbol{x}_{k+1}-\boldsymbol{x}_{k}\right), k:=k+1$ and go to Step 1.
You can find a variation of this method for instance in: C. C. Gonzaga and E. W. Karas, "Fine tuning Nesterov's steepest descent algorithm for differentiable convex programming," Mathematical Programming, 138 (2013), pp. 141-166.

9.1 Exercises

1. Complete the proof of Lemma 9.3.
2. We want to justify the Constant Step Scheme I of the Optimal Gradient Method. This is a particular case of the General Scheme for the Optimal Gradient Method for the following choice:

$$
\begin{aligned}
\gamma_{k+1} & :=L \alpha_{k}^{2}=\left(1-\alpha_{k}\right) \gamma_{k}+\alpha_{k} \mu \\
\boldsymbol{y}_{k} & =\frac{\alpha_{k} \gamma_{k} \boldsymbol{v}_{k}+\gamma_{k+1} \boldsymbol{x}_{k}}{\gamma_{k}+\alpha_{k} \mu} \\
\boldsymbol{x}_{k+1} & =\boldsymbol{y}_{k}-\frac{1}{L} f^{\prime}\left(\boldsymbol{y}_{k}\right) \\
\boldsymbol{v}_{k+1} & =\frac{\left(1-\alpha_{k}\right) \gamma_{k} \boldsymbol{v}_{k}+\alpha_{k} \mu \boldsymbol{y}_{k}-\alpha_{k} f^{\prime}\left(\boldsymbol{y}_{k}\right)}{\gamma_{k+1}} .
\end{aligned}
$$

(a) Show that $\boldsymbol{v}_{k+1}=\boldsymbol{x}_{k}+\frac{1}{\alpha_{k}}\left(\boldsymbol{x}_{k+1}-\boldsymbol{x}_{k}\right)$.
(b) Show that $\boldsymbol{y}_{k+1}=\boldsymbol{x}_{k+1}+\beta_{k}\left(\boldsymbol{x}_{k+1}-\boldsymbol{x}_{k}\right)$ for $\beta_{k}=\frac{\alpha_{k+1} \gamma_{k+1}\left(1-\alpha_{k}\right)}{\alpha_{k}\left(\gamma_{k+1}+\alpha_{k+1} \mu\right)}$.
(c) Show that $\beta_{k}=\frac{\alpha_{k}\left(1-\alpha_{k}\right)}{\alpha_{k}^{2}+\alpha_{k+1}}$.
(d) Explain why $\alpha_{k+1}^{2}=\left(1-\alpha_{k+1}\right) \alpha_{k}^{2}+\frac{\mu}{L} \alpha_{k+1}$.

10 Extension of the Optimal Gradient Method (First-Order Method, Accelerated Gradient Method, Fast Gradient Method) for "Simple" Convex Sets

We are interested now to solve the following problem:

$$
\begin{cases}\text { minimize } & f(\boldsymbol{x}) \tag{15}\\ \text { subject to } & \boldsymbol{x} \in Q\end{cases}
$$

where $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and Q is a closed convex subset of \mathbb{R}^{n}, simple enough to have an easy projection onto it, e.g., positive orthant, n dimensional box, simplex, Euclidean ball, etc.

Lemma 10.1 Let $f \in \mathcal{F}^{1}\left(\mathbb{R}^{n}\right)$ and Q be a closed convex set. The point \boldsymbol{x}^{*} is a solution of (15) if and only if

$$
\left\langle f^{\prime}\left(\boldsymbol{x}^{*}\right), \boldsymbol{x}-\boldsymbol{x}^{*}\right\rangle \geq 0, \quad \forall \boldsymbol{x} \in Q .
$$

Proof:
Indeed, if the inequality is true,

$$
f(\boldsymbol{x}) \geq f\left(\boldsymbol{x}^{*}\right)+\left\langle f^{\prime}\left(\boldsymbol{x}^{*}\right), \boldsymbol{x}-\boldsymbol{x}^{*}\right\rangle \geq f\left(\boldsymbol{x}^{*}\right) \quad \forall \boldsymbol{x} \in Q
$$

For the converse, let \boldsymbol{x}^{*} be an optimal solution of the minimization problem (15). Assume by contradiction that there is a $\boldsymbol{x} \in Q$ such that $\left\langle f^{\prime}\left(\boldsymbol{x}^{*}\right), \boldsymbol{x}-\boldsymbol{x}^{*}\right\rangle<0$. Consider the function $\phi(\alpha)=f\left(\boldsymbol{x}^{*}+\alpha\left(\boldsymbol{x}-\boldsymbol{x}^{*}\right)\right)$ for $\alpha \in[0,1]$. Since $\boldsymbol{x}^{*}, \boldsymbol{x} \in Q$ and Q is a convex set, $\boldsymbol{x}^{*}+\alpha\left(\boldsymbol{x}-\boldsymbol{x}^{*}\right) \in Q$, for $\forall \alpha \in[0,1]$. Then, $\phi(0)=f\left(\boldsymbol{x}^{*}\right)$ and $\phi^{\prime}(0)=\left\langle f^{\prime}\left(\boldsymbol{x}^{*}\right), \boldsymbol{x}-\boldsymbol{x}^{*}\right\rangle<0$. Therefore, for $\alpha>0$ small enough, we have

$$
f\left(\boldsymbol{x}^{*}+\alpha\left(\boldsymbol{x}-\boldsymbol{x}^{*}\right)\right)=\phi(\alpha)<\phi(0)=f\left(\boldsymbol{x}^{*}\right)
$$

which is a contradiction.
Lemma 10.2 Let $f \in \mathcal{S}_{\mu}^{1}\left(\mathbb{R}^{n}\right)$ with $\mu>0$, and Q be a closed convex set. Then there exists a unique solution \boldsymbol{x}^{*} for the problem (15).

Proof:
Left for exercise.
Definition 10.3 Let $f \in \mathcal{C}^{1}\left(\mathbb{R}^{n}\right), Q$ a closed convex set, $\overline{\boldsymbol{x}} \in \mathbb{R}^{n}$, and $\gamma>0$. Denote by

$$
\begin{aligned}
\boldsymbol{x}_{Q}(\overline{\boldsymbol{x}} ; \gamma) & :=\arg \min _{\boldsymbol{y} \in Q}\left[f(\overline{\boldsymbol{x}})+\left\langle f^{\prime}(\overline{\boldsymbol{x}}), \boldsymbol{y}-\overline{\boldsymbol{x}}\right\rangle+\frac{\gamma}{2}\|\boldsymbol{y}-\overline{\boldsymbol{x}}\|_{2}^{2}\right], \\
\boldsymbol{g}_{Q}(\overline{\boldsymbol{x}} ; \gamma) & :=\gamma\left(\overline{\boldsymbol{x}}-\boldsymbol{x}_{Q}(\overline{\boldsymbol{x}} ; \gamma)\right)
\end{aligned}
$$

We call $\boldsymbol{g}_{Q}(\overline{\boldsymbol{x}} ; \gamma)$ the gradient mapping of f on Q. Observe that due to Lemma $10.2, \boldsymbol{x}_{Q}(\overline{\boldsymbol{x}} ; \gamma)$ exists and it is uniquely defined.

In the case $Q \equiv \mathbb{R}^{n}$, notice that $\boldsymbol{x}_{Q}(\overline{\boldsymbol{x}} ; \gamma)=\overline{\boldsymbol{x}}-\frac{1}{\gamma} f^{\prime}(\overline{\boldsymbol{x}})$ and $\boldsymbol{g}_{Q}(\overline{\boldsymbol{x}} ; \gamma)=f^{\prime}(\overline{\boldsymbol{x}})$. Therefore, they take the roles of \boldsymbol{x}_{k+1} and $f^{\prime}\left(\boldsymbol{y}_{k}\right)$ in the Constant Step Scheme I for the Optimal Gradient Method, respectively.

Theorem 10.4 Let $f \in \mathcal{S}_{\mu, L}^{1,1}\left(\mathbb{R}^{n}\right), \gamma \geq L, \gamma>0, Q$ a closed convex set, and $\overline{\boldsymbol{x}} \in \mathbb{R}^{n}$. Then

$$
f(\boldsymbol{x}) \geq f\left(\boldsymbol{x}_{Q}(\overline{\boldsymbol{x}} ; \gamma)\right)+\left\langle\boldsymbol{g}_{Q}(\overline{\boldsymbol{x}} ; \gamma), \boldsymbol{x}-\overline{\boldsymbol{x}}\right\rangle+\frac{1}{2 \gamma}\left\|\boldsymbol{g}_{Q}(\overline{\boldsymbol{x}} ; \gamma)\right\|_{2}^{2}+\frac{\mu}{2}\|\boldsymbol{x}-\overline{\boldsymbol{x}}\|_{2}^{2}, \quad \forall \boldsymbol{x} \in Q
$$

Proof:
Let us use the following notation $\boldsymbol{x}_{Q}:=\boldsymbol{x}_{Q}(\overline{\boldsymbol{x}} ; \gamma)$ and $\boldsymbol{g}_{Q}:=\boldsymbol{g}_{Q}(\overline{\boldsymbol{x}} ; \gamma)$. Consider $\phi(\boldsymbol{x}):=$ $f(\overline{\boldsymbol{x}})+\left\langle f^{\prime}(\overline{\boldsymbol{x}}), \boldsymbol{x}-\overline{\boldsymbol{x}}\right\rangle+\frac{\gamma}{2}\|\boldsymbol{x}-\overline{\boldsymbol{x}}\|_{2}^{2}$.

Then $\phi^{\prime}(\boldsymbol{x})=f^{\prime}(\overline{\boldsymbol{x}})+\gamma(\boldsymbol{x}-\overline{\boldsymbol{x}})$. Therefore $\forall \boldsymbol{x} \in Q$, we have

$$
\left\langle\phi^{\prime}\left(\boldsymbol{x}_{Q}\right), \boldsymbol{x}-\boldsymbol{x}_{Q}\right\rangle=\left\langle f^{\prime}(\overline{\boldsymbol{x}})+\gamma\left(\boldsymbol{x}_{Q}-\overline{\boldsymbol{x}}\right), \boldsymbol{x}-\boldsymbol{x}_{Q}\right\rangle=\left\langle f^{\prime}(\overline{\boldsymbol{x}})-\boldsymbol{g}_{Q}, \boldsymbol{x}-\boldsymbol{x}_{Q}\right\rangle \geq 0
$$

due to Lemma 10.1.
Hence, $\forall \boldsymbol{x} \in Q$,

$$
\begin{aligned}
f(\boldsymbol{x})-\frac{\mu}{2}\|\boldsymbol{x}-\overline{\boldsymbol{x}}\|_{2}^{2} & \geq f(\overline{\boldsymbol{x}})+\left\langle f^{\prime}(\overline{\boldsymbol{x}}), \boldsymbol{x}-\overline{\boldsymbol{x}}\right\rangle \\
& =f(\overline{\boldsymbol{x}})+\left\langle f^{\prime}(\overline{\boldsymbol{x}}), \boldsymbol{x}-\boldsymbol{x}_{Q}\right\rangle+\left\langle f^{\prime}(\overline{\boldsymbol{x}}), \boldsymbol{x}_{Q}-\overline{\boldsymbol{x}}\right\rangle \\
& \geq f(\overline{\boldsymbol{x}})+\left\langle\boldsymbol{g}_{Q}, \boldsymbol{x}-\boldsymbol{x}_{Q}\right\rangle+\left\langle f^{\prime}(\overline{\boldsymbol{x}}), \boldsymbol{x}_{Q}-\overline{\boldsymbol{x}}\right\rangle \\
& =\phi\left(\boldsymbol{x}_{Q}\right)-\frac{\gamma}{2}\left\|\boldsymbol{x}_{Q}-\overline{\boldsymbol{x}}\right\|_{2}^{2}+\left\langle\boldsymbol{g}_{Q}, \boldsymbol{x}-\boldsymbol{x}_{Q}\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& =\phi\left(\boldsymbol{x}_{Q}\right)-\frac{1}{2 \gamma}\left\|\boldsymbol{g}_{Q}\right\|_{2}^{2}+\left\langle\boldsymbol{g}_{Q}, \boldsymbol{x}-\boldsymbol{x}_{Q}\right\rangle \\
& =\phi\left(\boldsymbol{x}_{Q}\right)-\frac{1}{2 \gamma}\left\|\boldsymbol{g}_{Q}\right\|_{2}^{2}+\left\langle\boldsymbol{g}_{Q}, \overline{\boldsymbol{x}}-\boldsymbol{x}_{Q}\right\rangle+\left\langle\boldsymbol{g}_{Q}, \boldsymbol{x}-\overline{\boldsymbol{x}}\right\rangle \\
& =\phi\left(\boldsymbol{x}_{Q}\right)+\frac{1}{2 \gamma}\left\|\boldsymbol{g}_{Q}\right\|_{2}^{2}+\left\langle\boldsymbol{g}_{Q}, \boldsymbol{x}-\overline{\boldsymbol{x}}\right\rangle .
\end{aligned}
$$

Since $\gamma \geq L$, we have $\phi\left(\boldsymbol{x}_{Q}\right) \geq f\left(\boldsymbol{x}_{Q}\right)$ from Lemma 3.4, and the result follows.
We are ready to define our estimated sequence. Assume that $f \in \mathcal{S}_{\mu, L}^{1,1}\left(\mathbb{R}^{n}\right)$ possible with $\mu=0$ (which means that $f \in \mathcal{F}_{L}^{1,1}\left(\mathbb{R}^{n}\right)$), $\boldsymbol{x}_{0} \in Q$, and $\gamma_{0}>0$. Define

$$
\begin{aligned}
\phi_{0}(\boldsymbol{x}):= & f\left(\boldsymbol{x}_{0}\right)+\frac{\gamma_{0}}{2}\left\|\boldsymbol{x}-\boldsymbol{x}_{0}\right\|_{2}^{2} \\
\phi_{k+1}(\boldsymbol{x}):= & \left(1-\alpha_{k}\right) \phi_{k}(\boldsymbol{x})+\alpha_{k}\left[f\left(\boldsymbol{x}_{Q}\left(\boldsymbol{y}_{k} ; L\right)\right)+\frac{1}{2 L}\left\|\boldsymbol{g}_{Q}\left(\boldsymbol{y}_{k} ; L\right)\right\|_{2}^{2}+\left\langle\boldsymbol{g}_{Q}\left(\boldsymbol{y}_{k} ; L\right), \boldsymbol{x}-\boldsymbol{y}_{k}\right\rangle\right. \\
& \left.+\frac{\mu}{2}\left\|\boldsymbol{x}-\boldsymbol{y}_{k}\right\|_{2}^{2}\right],
\end{aligned}
$$

for the sequences $\left\{\alpha_{k}\right\}_{k=0}^{\infty}$ and $\left\{\boldsymbol{y}_{k}\right\}_{k=0}^{\infty}$ which will be defined later.
Similarly to the previous subsection, we can prove that $\left\{\phi_{k}(\boldsymbol{x})\right\}_{k=0}^{\infty}$ can be written in the form

$$
\phi_{k}(\boldsymbol{x})=\phi_{k}^{*}+\frac{\gamma_{k}}{2}\left\|\boldsymbol{x}-\boldsymbol{v}_{k}\right\|_{2}^{2}
$$

for $\phi_{0}^{*}=f\left(\boldsymbol{x}_{0}\right), \boldsymbol{v}_{0}=\boldsymbol{x}_{0}$:

$$
\begin{aligned}
\gamma_{k+1}= & \left(1-\alpha_{k}\right) \gamma_{k}+\alpha_{k} \mu \\
\boldsymbol{v}_{k+1}= & \frac{1}{\gamma_{k+1}}\left[\left(1-\alpha_{k}\right) \gamma_{k} \boldsymbol{v}_{k}+\alpha_{k} \mu \boldsymbol{y}_{k}-\alpha_{k} \boldsymbol{g}_{Q}\left(\boldsymbol{y}_{k} ; L\right)\right] \\
\phi_{k+1}^{*}= & \left(1-\alpha_{k}\right) \phi_{k}^{*}+\alpha_{k} f\left(\boldsymbol{x}_{Q}\left(\boldsymbol{y}_{k} ; L\right)\right)+\left(\frac{\alpha_{k}}{2 L}-\frac{\alpha_{k}^{2}}{2 \gamma_{k+1}}\right)\left\|\boldsymbol{g}_{Q}\left(\boldsymbol{y}_{k} ; L\right)\right\|_{2}^{2} \\
& +\frac{\alpha_{k}\left(1-\alpha_{k}\right) \gamma_{k}}{\gamma_{k+1}}\left(\frac{\mu}{2}\left\|\boldsymbol{y}_{k}-\boldsymbol{v}_{k}\right\|_{2}^{2}+\left\langle\boldsymbol{g}_{Q}\left(\boldsymbol{y}_{k} ; L\right), \boldsymbol{v}_{k}-\boldsymbol{y}_{k}\right\rangle\right)
\end{aligned}
$$

Now, $\phi_{0}^{*} \geq f\left(\boldsymbol{x}_{0}\right)$. Assuming that $\phi_{k}^{*} \geq f\left(\boldsymbol{x}_{k}\right)$,

$$
\begin{aligned}
\phi_{k+1}^{*} \geq & \left(1-\alpha_{k}\right) f\left(\boldsymbol{x}_{k}\right)+\alpha_{k} f\left(\boldsymbol{x}_{Q}\left(\boldsymbol{y}_{k} ; L\right)\right)+\left(\frac{\alpha_{k}}{2 L}-\frac{\alpha_{k}^{2}}{2 \gamma_{k+1}}\right)\left\|\boldsymbol{g}_{Q}\left(\boldsymbol{y}_{k} ; L\right)\right\|_{2}^{2} \\
& +\frac{\alpha_{k}\left(1-\alpha_{k}\right) \gamma_{k}}{\gamma_{k+1}}\left\langle\boldsymbol{g}_{Q}\left(\boldsymbol{y}_{k} ; L\right), \boldsymbol{v}_{k}-\boldsymbol{y}_{k}\right\rangle \\
\geq & f\left(\boldsymbol{x}_{Q}\left(\boldsymbol{y}_{k} ; L\right)\right)+\left(\frac{1}{2 L}-\frac{\alpha_{k}^{2}}{2 \gamma_{k+1}}\right)\left\|\boldsymbol{g}_{Q}\left(\boldsymbol{y}_{k} ; L\right)\right\|_{2}^{2} \\
& +\left(1-\alpha_{k}\right)\left\langle\boldsymbol{g}_{Q}\left(\boldsymbol{y}_{k} ; L\right), \frac{\alpha_{k} \gamma_{k}}{\gamma_{k+1}}\left(\boldsymbol{v}_{k}-\boldsymbol{y}_{k}\right)+\boldsymbol{x}_{k}-\boldsymbol{y}_{k}\right\rangle+\frac{\left(1-\alpha_{k}\right) \mu}{2}\left\|\boldsymbol{x}_{k}-\boldsymbol{y}_{k}\right\|_{2}^{2}
\end{aligned}
$$

where the last inequality follows from Theorem 10.4.
Therefore, if we choose

$$
\begin{aligned}
\boldsymbol{x}_{k+1} & =\boldsymbol{x}_{Q}\left(\boldsymbol{y}_{k} ; L\right) \\
L \alpha_{k}^{2} & =\left(1-\alpha_{k}\right) \gamma_{k}+\alpha_{k} \mu \\
\gamma_{k+1} & :=L \alpha_{k}^{2} \\
\boldsymbol{y}_{k} & =\frac{1}{\gamma_{k}+\alpha_{k} \mu}\left(\alpha_{k} \gamma_{k} \boldsymbol{v}_{k}+\gamma_{k+1} \boldsymbol{x}_{k}\right)
\end{aligned}
$$

we obtain $\phi_{k+1}^{*} \geq f\left(\boldsymbol{x}_{k+1}\right)$ as desired.
Hereafter, we assume that $L>\mu$ to exclude the trivial case $L=\mu$ with finished in one iteration.

Constant Step Scheme I for the Optimal Gradient Method over the Simple Set Q

Step 0: Choose $\boldsymbol{x}_{0} \in \mathbb{R}^{n}, \alpha_{0} \in(0,1)$ such that $\frac{\alpha_{0}\left(\alpha_{0} L-\mu\right)}{1-\alpha_{0}}>0, \mu \leq \frac{\alpha_{0}\left(\alpha_{0} L-\mu\right)}{1-\alpha_{0}} \leq L$, set $\boldsymbol{y}_{0}:=\boldsymbol{x}_{0}, k:=0$.
Step 1: Compute $f\left(\boldsymbol{y}_{k}\right)$ and $f^{\prime}\left(\boldsymbol{y}_{k}\right)$.
Step 2: Set $\boldsymbol{x}_{k+1}:=\boldsymbol{x}_{Q}\left(\boldsymbol{y}_{k} ; L\right):=\arg \min _{\boldsymbol{x} \in Q}\left[f\left(\boldsymbol{y}_{k}\right)+\left\langle f^{\prime}\left(\boldsymbol{y}_{k}\right), \boldsymbol{x}-\boldsymbol{y}_{k}\right\rangle+\frac{\alpha_{k}\left(\alpha_{k} L-\mu\right)}{2\left(1-\alpha_{k}\right)}\left\|\boldsymbol{x}-\boldsymbol{y}_{k}\right\|_{2}^{2}\right]$.
Step 3: Compute $\alpha_{k+1} \in(0,1)$ from the equation $\alpha_{k+1}^{2}=\left(1-\alpha_{k+1}\right) \alpha_{k}^{2}+\frac{\mu}{L} \alpha_{k+1}$.
Step 4: Set $\beta_{k}:=\frac{\alpha_{k}\left(1-\alpha_{k}\right)}{\alpha_{k}^{2}+\alpha_{k+1}}$.
Step 5: Set $\boldsymbol{y}_{k+1}:=\boldsymbol{x}_{k+1}+\beta_{k}\left(\boldsymbol{x}_{k+1}-\boldsymbol{x}_{k}\right), k:=k+1$ and go to Step 1.
The rate of converge of this algorithm is exactly the same as the previous ones, but it is necessary to solve a convex program in Step 2 for each iteration.

10.1 Exercises

1. Prove Lemma 10.2

11 Extension for the Min-Max Problem

Given $f_{i} \in \mathcal{S}_{\mu, L}^{1,1}\left(\mathbb{R}^{n}\right)(i=1,2, \ldots, m)$, we define the following function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$,

$$
f(\boldsymbol{x}):=\max _{1 \leq i \leq m} f_{i}(\boldsymbol{x}) \quad \text { for } \quad \boldsymbol{x} \in \mathbb{R}^{n} .
$$

This function is non-differentiable in general, but we will see that the method discussed so far can be easily adapted for the following min-max-type convex optimization problem.

$$
\begin{cases}\text { minimize } & f(\boldsymbol{x}) \tag{16}\\ \text { subject to } & \boldsymbol{x} \in Q\end{cases}
$$

where Q is a closed convex set with a "simple" structure, and $f(\boldsymbol{x})$ is defined as above.
For a given $\overline{\boldsymbol{x}} \in \mathbb{R}^{n}$, let us define the following linearization of $f(\boldsymbol{x})$ at $\overline{\boldsymbol{x}}$.

$$
f(\overline{\boldsymbol{x}} ; \boldsymbol{x}):=\max _{1 \leq i \leq m}\left[f_{i}(\overline{\boldsymbol{x}})+\left\langle f_{i}^{\prime}(\overline{\boldsymbol{x}}), \boldsymbol{x}-\overline{\boldsymbol{x}}\right\rangle\right], \quad \text { for } \boldsymbol{x} \in \mathbb{R}^{n} .
$$

Lemma 11.1 Let $f_{i} \in \mathcal{S}_{\mu, L}^{1,1}\left(\mathbb{R}^{n}\right) \quad(i=1,2, \ldots, m)$. For $\boldsymbol{x} \in \mathbb{R}^{n}$, we have

$$
\begin{aligned}
& f(\boldsymbol{x}) \geq f(\overline{\boldsymbol{x}} ; \boldsymbol{x})+\frac{\mu}{2}\|\boldsymbol{x}-\overline{\boldsymbol{x}}\|_{2}^{2} \\
& f(\boldsymbol{x}) \leq f(\overline{\boldsymbol{x}} ; \boldsymbol{x})+\frac{L}{2}\|\boldsymbol{x}-\overline{\boldsymbol{x}}\|_{2}^{2}
\end{aligned}
$$

Proof:
It follows from the properties of $f_{i} \in \mathcal{S}_{\mu, L}^{1,1}\left(\mathbb{R}^{n}\right)$.
Theorem 11.2 A point $\boldsymbol{x}^{*} \in Q$ is an optimal solution of (16), if and only if

$$
f\left(\boldsymbol{x}^{*} ; \boldsymbol{x}\right) \geq f\left(\boldsymbol{x}^{*} ; \boldsymbol{x}^{*}\right)=f\left(\boldsymbol{x}^{*}\right), \quad \forall \boldsymbol{x} \in Q .
$$

Proof:
It can be proved similarly to Lemma 10.1.
Corollary 11.3 Let \boldsymbol{x}^{*} be a minimum of a max-type function $f(\boldsymbol{x})$ over the set Q. If $f \in \mathcal{S}_{\mu}^{1}\left(\mathbb{R}^{n}\right)$, then,

$$
f(\boldsymbol{x}) \geq f\left(\boldsymbol{x}^{*}\right)+\frac{\mu}{2}\left\|\boldsymbol{x}-\boldsymbol{x}^{*}\right\|_{2}^{2}, \quad \forall \boldsymbol{x} \in Q
$$

Proof:

From Lemma 11.1 and Theorem 11.2, we have $\forall \boldsymbol{x} \in Q$,

$$
\begin{aligned}
f(\boldsymbol{x}) & \geq f\left(\boldsymbol{x}^{*} ; \boldsymbol{x}\right)+\frac{\mu}{2}\left\|\boldsymbol{x}-\boldsymbol{x}^{*}\right\|_{2}^{2} \\
& \geq f\left(\boldsymbol{x}^{*} ; \boldsymbol{x}^{*}\right)+\frac{\mu}{2}\left\|\boldsymbol{x}-\boldsymbol{x}^{*}\right\|_{2}^{2}=f\left(\boldsymbol{x}^{*}\right)+\frac{\mu}{2}\left\|\boldsymbol{x}-\boldsymbol{x}^{*}\right\|_{2}^{2}
\end{aligned}
$$

Lemma 11.4 Let $f_{i} \in \mathcal{S}_{\mu}^{1}\left(\mathbb{R}^{n}\right)$ for $(i=1,2, \ldots, m)$ with $\mu>0$ and Q be a closed convex set. Then there is a unique solution \boldsymbol{x}^{*} for the problem (16).

Proof:
Again, the proof is similar to the one of Lemma 10.2.
Definition 11.5 Let $f_{i} \in \mathcal{C}^{1}\left(\mathbb{R}^{n}\right)(i=1,2, \ldots, m), Q$ a closed convex set, $\overline{\boldsymbol{x}} \in \mathbb{R}^{n}$, and $\gamma>0$. Denote by

$$
\begin{aligned}
\boldsymbol{x}_{f}(\overline{\boldsymbol{x}} ; \gamma) & :=\arg \min _{\boldsymbol{y} \in Q}\left[f(\overline{\boldsymbol{x}} ; \boldsymbol{y})+\frac{\gamma}{2}\|\boldsymbol{y}-\overline{\boldsymbol{x}}\|_{2}^{2}\right] \\
\boldsymbol{g}_{f}(\overline{\boldsymbol{x}} ; \gamma) & :=\gamma\left(\overline{\boldsymbol{x}}-\boldsymbol{x}_{f}(\overline{\boldsymbol{x}} ; \gamma)\right) .
\end{aligned}
$$

We call $\boldsymbol{g}_{f}(\overline{\boldsymbol{x}} ; \gamma)$ the gradient mapping of max-type function f on Q. Observe that due to Lemma 11.4, $\boldsymbol{x}_{f}(\overline{\boldsymbol{x}} ; \gamma)$ exists and it is uniquely defined since $f_{i}(\overline{\boldsymbol{x}})+\left\langle f_{i}^{\prime}(\overline{\boldsymbol{x}}), \boldsymbol{x}-\overline{\boldsymbol{x}}\right\rangle+\frac{\gamma}{2}\|\boldsymbol{y}-\overline{\boldsymbol{x}}\|_{2}^{2} \in$ $\mathcal{S}_{\mu}^{1}\left(\mathbb{R}^{n}\right)(i=1,2, \ldots, m)$.

Notice also that when $m=1$, the above definition coincides with Definition 10.3.
Theorem 11.6 Let $f_{i} \in \mathcal{S}_{\mu, L}^{1,1}\left(\mathbb{R}^{n}\right)(i=1,2, \ldots, m), \gamma \geq L, \gamma>0, Q$ a closed convex set, and $\overline{\boldsymbol{x}} \in \mathbb{R}^{n}$. Then

$$
f(\boldsymbol{x}) \geq f\left(\boldsymbol{x}_{f}(\overline{\boldsymbol{x}} ; \gamma)\right)+\left\langle\boldsymbol{g}_{f}(\overline{\boldsymbol{x}} ; \gamma), \boldsymbol{x}-\overline{\boldsymbol{x}}\right\rangle+\frac{1}{2 \gamma}\left\|\boldsymbol{g}_{f}(\overline{\boldsymbol{x}} ; \gamma)\right\|_{2}^{2}+\frac{\mu}{2}\|\boldsymbol{x}-\overline{\boldsymbol{x}}\|_{2}^{2}, \quad \forall \boldsymbol{x} \in Q
$$

Proof: Let us use the following notation: $\boldsymbol{x}_{f}:=\boldsymbol{x}_{f}(\overline{\boldsymbol{x}} ; \gamma)$ and $\boldsymbol{g}_{f}:=\boldsymbol{g}_{f}(\overline{\boldsymbol{x}} ; \gamma)$.
From Lemma 11.1 and Corollary 11.3 (taking $f(\boldsymbol{x})$ in there as $f(\overline{\boldsymbol{x}} ; \boldsymbol{x})+\frac{\gamma}{2}\|\boldsymbol{x}-\overline{\boldsymbol{x}}\|_{2}^{2}$), we have $\forall \boldsymbol{x} \in Q$,

$$
\begin{aligned}
f(\boldsymbol{x})-\frac{\mu}{2}\|\boldsymbol{x}-\overline{\boldsymbol{x}}\|_{2}^{2} & \geq f(\overline{\boldsymbol{x}} ; \boldsymbol{x}) \\
& =f(\overline{\boldsymbol{x}} ; \boldsymbol{x})+\frac{\gamma}{2}\|\boldsymbol{x}-\overline{\boldsymbol{x}}\|_{2}^{2}-\frac{\gamma}{2}\|\boldsymbol{x}-\overline{\boldsymbol{x}}\|_{2}^{2} \\
& \geq f\left(\overline{\boldsymbol{x}} ; \boldsymbol{x}_{f}\right)+\frac{\gamma}{2}\left\|\boldsymbol{x}_{f}-\overline{\boldsymbol{x}}\right\|_{2}^{2}+\frac{\gamma}{2}\left\|\boldsymbol{x}-\boldsymbol{x}_{f}\right\|_{2}^{2}-\frac{\gamma}{2}\|\boldsymbol{x}-\overline{\boldsymbol{x}}\|_{2}^{2} \\
& =f\left(\overline{\boldsymbol{x}} ; \boldsymbol{x}_{f}\right)+\frac{\gamma}{2}\left\|\boldsymbol{x}_{f}-\overline{\boldsymbol{x}}\right\|_{2}^{2}+\frac{\gamma}{2}\left\langle\overline{\boldsymbol{x}}-\boldsymbol{x}_{f}, 2 \boldsymbol{x}-\boldsymbol{x}_{f}-\overline{\boldsymbol{x}}\right\rangle \\
& =f\left(\overline{\boldsymbol{x}} ; \boldsymbol{x}_{f}\right)+\frac{\gamma}{2}\left\|\boldsymbol{x}_{f}-\overline{\boldsymbol{x}}\right\|_{2}^{2}+\frac{\gamma}{2}\left\langle\overline{\boldsymbol{x}}-\boldsymbol{x}_{f}, 2(\boldsymbol{x}-\overline{\boldsymbol{x}})+\overline{\boldsymbol{x}}-\boldsymbol{x}_{f}\right\rangle
\end{aligned}
$$

