
8.1 Exercises

1. Prove Corollary 8.2.

9 The Optimal Gradient Method (First-Order Method, Acceler-
ated Gradient Method, Fast Gradient Method)

This algorithm was proposed for the first time by Nesterov3 in 1983. In [Nesterov03], he gives a
reinterpretation of the algorithm and provides another justification of it which attains the same
complexity bound of the original article.

Definition 9.1 A pair of sequences {ϕk(x)}∞k=0 and {λk}∞k=0 with λk ≥ 0 is called an estimate
sequence of the function f(x) if

λk → 0,

and for any x ∈ Rn and any k ≥ 0, we have

ϕk(x) ≤ (1− λk)f(x) + λkϕ0(x).

Lemma 9.2 Given an estimate sequence {ϕk(x)}∞k=0, {λk}∞k=0, and if for some sequence {xk}∞k=0

we have
f(xk) ≤ ϕ∗

k := min
x∈Rn

ϕk(x)

then f(xk)− f(x∗) ≤ λk(ϕ0(x
∗)− f(x∗)) → 0.

Proof:
It follows from the definition.

Lemma 9.3 Assume that

1. f ∈ S1
µ(Rn), possible with µ = 0 (which means that f ∈ F1(Rn)).

2. ϕ0(x) is an arbitrary function on Rn.

3. {yk}∞k=0 is an arbitrary sequence in Rn.

4. {αk}∞k=−1 is an arbitrary sequence such that α−1 = 0, αk ∈ (0, 1] (k = 0, 1, . . .), and

∞∑
k=0

αk =

∞.

Then the pair of sequences

{
k−1∏
i=−1

(1− αi)

}∞

k=0

and {ϕk(x)}∞k=0 recursively defined as

ϕk+1(x) = (1− αk)ϕk(x) + αk

[
f(yk) + ⟨f ′(yk),x− yk⟩+

µ

2
∥x− yk∥22

]

is an estimate sequence.

3Y. Nesterov, “A method for solving the convex programming problem with convergence rate O(1/k2),” Dokl.
Akad. Nauk SSSR 269 (1983), pp. 543–547.
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Proof:
Let us prove by induction on k. For k = 0, ϕ0(x) = (1− (1− α−1)) f(x)+ (1−α−1)ϕ0(x) since

α−1 = 0. Suppose that the induction hypothesis is valid for any index equal or smaller than k.
Since f ∈ S1

µ(Rn),

ϕk+1(x) = (1− αk)ϕk(x) + αk

[
f(yk) + ⟨f ′(yk),x− yk⟩+

µ

2
∥x− yk∥22

]
≤ (1− αk)ϕk(x) + αkf(x)

=

(
1− (1− αk)

k−1∏
i=−1

(1− αi)

)
f(x) + (1− αk)

(
ϕk(x)−

(
1−

k−1∏
i=−1

(1− αi)

)
f(x)

)

≤

(
1− (1− αk)

k−1∏
i=−1

(1− αi)

)
f(x) + (1− αk)

k−1∏
i=−1

(1− αi)ϕ0(x)

=

(
1−

k∏
i=−1

(1− αi)

)
f(x) +

k∏
i=−1

(1− αi)ϕ0(x).

The remaining part is left for exercise.

Lemma 9.4 Let f : Rn → R be an arbitrary continuously differentiable function. Also let ϕ∗
0 ∈ R,

µ ≥ 0, γ0 ≥ 0, v0 ∈ Rn, {yk}∞k=0, and {αk}∞k=0 given arbitrarily sequences such that α−1 = 0,
αk ∈ (0, 1] (k = 0, 1, . . .). In the special case of µ = 0, we further assume that γ0 > 0 and
αk < 1 (k = 0, 1, . . .). Let ϕ0(x) = ϕ∗

0 +
γ0
2 ∥x− v0∥22. If we define recursively ϕk+1(x) such as the

previous lemma:

ϕk+1(x) = (1− αk)ϕk(x) + αk

[
f(yk) + ⟨f ′(yk),x− yk⟩+

µ

2
∥x− yk∥22

]
,

then ϕk+1(x) preserve the canonical form

ϕk+1(x) = ϕ∗
k+1 +

γk+1

2
∥x− vk+1∥22 (12)

for

γk+1 = (1− αk)γk + αkµ,

vk+1 =
1

γk+1
[(1− αk)γkvk + αkµyk − αkf

′(yk)],

ϕ∗
k+1 = (1− αk)ϕ

∗
k + αkf(yk)−

α2
k

2γk+1
∥f ′(yk)∥22

+
αk(1− αk)γk

γk+1

(µ
2
∥yk − vk∥22 + ⟨f ′(yk),vk − yk⟩

)
.

Proof:
We will use again the induction hypothesis in k. Note that ϕ′′

0(x) = γ0I. Now, for any k ≥ 0,

ϕ′′
k+1(x) = (1− αk)ϕ

′′
k(x) + αkµI = ((1− αk)γk + αkµ) I = γk+1I.

Therefore, ϕk+1(x) is a quadratic function of the form (12). Also, γk+1 > 0 since µ > 0 and
αk > 0 (k = 0, 1, . . .); or if µ = 0, we assumed that γ0 > 0 and αk ∈ (0, 1) (k = 0, 1, . . .).

From the first-order optimality condition

ϕ′
k+1(x) = (1− αk)ϕ

′
k(x) + αkf

′(yk) + αkµ(x− yk)

= (1− αk)γk(x− vk) + αkf
′(yk) + αkµ(x− yk) = 0.
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Thus,

x = vk+1 =
1

γk+1

[
(1− αk)γkvk + αkµyk − αkf

′(yk)
]

is the minimal optimal solution of ϕk+1(x).
Finally, from what we proved so far and from the definition

ϕk+1(yk) = ϕ∗
k+1 +

γk+1

2 ∥yk − vk+1∥22
= (1− αk)ϕk(yk) + αkf(yk)
= (1− αk)

(
ϕ∗
k +

γk
2 ∥yk − vk∥22

)
+ αkf(yk).

(13)

Now,

vk+1 − yk =
1

γk+1

[
(1− αk)γk(vk − yk)− αkf

′(yk)
]
.

Therefore,

γk+1

2 ∥vk+1 − yk∥22 = 1
2γk+1

[
(1− αk)

2γ2k∥vk − yk∥22 + α2
k∥f ′(yk)∥22

−2αk(1− αk)γk⟨f ′(yk),vk − yk⟩] .
(14)

Substituting (14) into (13), we obtain the expression for ϕ∗
k+1.

Theorem 9.5 Let L ≥ µ ≥ 0. Consider f ∈ S1,1
µ,L(R

n), possible with µ = 0 (which means that

f ∈ F1,1
L (Rn)). For given x0,v0 ∈ Rn, let us choose ϕ∗

0 = f(x0). Consider also γ0 > 0 such that
L ≥ γ0 ≥ µ ≥ 0. Define the sequences {αk}∞k=−1, {γk}∞k=0, {yk}∞k=0, {xk}∞k=0, {vk}∞k=0, {ϕ∗

k}∞k=0,
and {ϕk(x)}∞k=0 as follows:

α−1 = 0,

αk ∈ (0, 1] root of Lα2
k = (1− αk)γk + αkµ := γk+1,

yk =
αkγkvk + γk+1xk

γk + αkµ
,

xk is such that f(xk+1) ≤ f(yk)−
1

2L
∥f ′(yk)∥22,

vk+1 =
1

γk+1
[(1− αk)γkvk + αkµyk − αkf

′(yk)],

ϕ∗
k+1 = (1− αk)ϕ

∗
k + αkf(yk)−

α2
k

2γk+1
∥f ′(yk)∥22

+
αk(1− αk)γk

γk+1

(µ
2
∥yk − vk∥22 + ⟨f ′(yk),vk − yk⟩

)
,

ϕk+1(x) = ϕ∗
k+1 +

γk+1

2
∥x− vk+1∥22.

Then, we satisfy all the conditions of Lemma 9.2 for the λk =
k−1∏
i=−1

(1− αk).

Proof:
In fact, due to Lemmas 9.3 and 9.4, it just remains to show that αk ∈ (0, 1] for (k = 0, 1, . . .)

such that

∞∑
k=0

αk = ∞. In the special case of µ = 0, we must show that αk < 1 (k = 0, 1, . . .). And

finally that f(xk) ≤ ϕ∗
k.

Let us show both using induction hypothesis.
Consider the quadratic equation in α, q0(α) := Lα2 + (γ0 − µ)α − γ0 = 0. Notice that its

discriminant ∆ := (γ0 − µ)2 + 4γ0L is always positive by the hypothesis. Also, q0(0) = −γ0 < 0,
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but due to the hypothesis again. Therefore, this equation always has a root α0 > 0. Since q0(1) =
L− µ ≥ 0, α0 ≤ 1, and we have α0 ∈ (0, 1]. If µ = 0, and α0 = 1, we will have L = 0 which implies
γ0 = 0 which contradicts our hypothesis. Then α0 < 1. In addition, γ1 := (1−α0)γ0+α0µ > 0 and
γ0 + α0µ > 0. The same arguments are valid for any k. Therefore, αk ∈ (0, 1], and αk < 1 (k =
0, 1, . . . , ) if µ = 0.

Finally, Lα2
k = (1−αk)γk +αkµ ≥ (1−αk)µ+αkµ = µ. And we have αk ≥

√
µ
L , and therefore,

∞∑
k=0

αk = ∞, if µ > 0. For the case µ = 0, the argument is the same as the proof of Theorem 9.6.

Now, suppose that for k = 0, f(x0) ≤ ϕ∗
0. Suppose that the induction hypothesis is valid for

any index equal or smaller than k. Due to the previous lemma,

ϕ∗
k+1 = (1− αk)ϕ

∗
k + αkf(yk)−

α2
k

2γk+1
∥f ′(yk)∥22

+
αk(1− αk)γk

γk+1

(µ
2
∥yk − vk∥22 + ⟨f ′(yk),vk − yk⟩

)
≥ (1− αk)f(xk) + αkf(yk)−

α2
k

2γk+1
∥f ′(yk)∥22

+
αk(1− αk)γk

γk+1

(µ
2
∥yk − vk∥22 + ⟨f ′(yk),vk − yk⟩

)
.

Now, since f(x) is convex, f(xk) ≥ f(yk) + ⟨f ′(yk),xk − yk⟩, and we have:

ϕ∗
k+1 ≥ f(yk)−

α2
k

2γk+1
∥f ′(yk)∥22+(1−αk)⟨f ′(yk),

αkγk
γk+1

(vk−yk)+xk−yk⟩+
αk(1− αk)γkµ

2γk+1
∥yk−vk∥22.

Recall that since f ′ is L-Lipschitz continuous, if we apply Lemma 3.4 to yk and xk+1 = yk− 1
Lf

′(yk),
we obtain

f(yk)−
1

2L
∥f ′(yk)∥22 ≥ f(xk+1).

Therefore, if we impose
αkγk
γk+1

(vk − yk) + xk − yk = 0

it justifies our choice for yk. And putting

α2
k

2γk+1
=

1

2L

it justifies our choice for αk. Since
αk(1−αk)γkµ

γk+1
≥ 0, we finally obtain ϕ∗

k+1 ≥ f(xk+1) as wished.

The above theorem suggests an algorithm to minimize f ∈ S1,1
µ,L(R

n).
Notice that in the following optimal gradient method, we don’t need the estimated sequence

anymore.
General Scheme for the Optimal Gradient Method

Step 0: Choose x0 ∈ Rn, let γ0 > 0 such that L ≥ γ0 ≥ µ ≥ 0.
Set v0 := x0 and k := 0.

Step 1: Compute αk ∈ (0, 1] from the equation Lα2
k = (1− αk)γk + αkµ.

Step 2: Set γk+1 := (1− αk)γk + αkµ, yk :=
αkγkvk+γk+1xk

γk+αkµ
.

Step 3: Compute f(yk) and f ′(yk).
Step 4: Find xk+1 such that f(xk+1) ≤ f(yk)− 1

2L∥f
′(yk)∥22 using “line search”.

Step 5: Set vk+1 :=
(1−αk)γkvk+αkµyk−αkf

′(yk)
γk+1

, k := k + 1 and go to Step 1.
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