8.1 Exercises

1. Prove Corollary 8.2.

9 The Optimal Gradient Method (First-Order Method, Acceler-
ated Gradient Method, Fast Gradient Method)

This algorithm was proposed for the first time by Nesterov® in 1983. In [Nesterov03], he gives a
reinterpretation of the algorithm and provides another justification of it which attains the same
complexity bound of the original article.

Definition 9.1 A pair of sequences {¢y(x)}72, and {A;}72, with Ay > 0 is called an estimate
sequence of the function f(x) if
A — 0,

and for any & € R" and any k > 0, we have

dr(x) < (1= Xp) f() + Apgo().

Lemma 9.2 Given an estimate sequence {¢y(x)}72, {\x}5,, and if for some sequence {x;}7°,
we have

f(xr) < ¢f := min ()

xcR"”
then f(x) — f(x*) < Ag(do(x*) — f(x*)) — 0.
Proof:
It follows from the definition. I

Lemma 9.3 Assume that
1. fe S}J(Rn), possible with p = 0 (which means that f € F*(R")).
2. ¢o(x) is an arbitrary function on R".

3. {yr}i2, is an arbitrary sequence in R".

o0
4. {ap}p2 _, is an arbitrary sequence such that a_; =0, a;, € (0,1] (k=0,1,...), and Z ay =
k=0

0.
k-1 e
Then the pair of sequences { H (1- ai)} and {¢g(x)}72, recursively defined as
=-1 k=0
(@) = (1= an)on(@) +ax | fe) + (F (i), — i) + Slo =yl

is an estimate sequence.

3Y. Nesterov, “A method for solving the convex programming problem with convergence rate O(l/kz),” Dokl.
Akad. Nauk SSSR 269 (1983), pp. 543-547.
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Proof:

Let us prove by induction on k. For k =0, ¢o(x) = (1 — (1 — a_1)) f(x) + (1 — a_1)po(x) since
a_1 = 0. Suppose that the induction hypothesis is valid for any index equal or smaller than k.
Since f € Sh(R”),

@) = (1- > o(@) +an [ i) + (i) @ = ye) + Sl =yl

< (1 —ar)or(x) + o f(x)
k 1 k—1

= <1 —(1-a) JJ - ozz-)) f() + (1 —ag) (fbk(ﬂc) - <1 - H (1- ai)) f(m)>
Zk__l k—1 o

< (1 —(1—ayg) (1 — ai)> flx)+ (1 — ag) H (1 — @i)go(z)
i=—1 i=—1

- (1_H(1—az> +H 1 — ai)do(x

i=—1 i=—1
The remaining part is left for exercise. I

Lemma 9.4 Let f : R" — R be an arbitrary continuously differentiable function. Also let ¢ € R,
p>0,7% >0, vy € R, {y,}72,, and {a}2, given arbitrarily sequences such that a_; = 0,
ar € (0,1] (k= 0,1,...). In the special case of p = 0, we further assume that ¢ > 0 and
ar <1 (k=0,1,...). Let ¢o(x) = ¢} + 2|l — vo||3. If we define recursively ¢r1(x) such as the
previous lemma:

bri1(@) = (1= a)én(@) +ax [ Flyp) + (F (wp),@ — i) + Slle — wil3]

then ¢p11(x) preserve the canonical form

V41
bry1(x) = dppq + 2+ & — v 3 (12)
for
Yerr = (1 —ap)me + arp,
1
Vpp1 = — (1 — o) vr + appyy, — akf/(yk)]a
Vk+1
Grp1 = (1—o)dj +onfyy) — "(yi)l3
op(l —ap)ye (1
OO (B 2 4 ).k — )
V41
Proof:

We will use again the induction hypothesis in k. Note that ¢f(x) = v0I. Now, for any k > 0,

Gpr1(x) = (1 — o)y () + appud = (1 — o) yi + app) I = v I

Therefore, ¢ry1(x) is a quadratic function of the form (12). Also, yx4+1 > 0 since g > 0 and
ar >0 (k=0,1,...); orif 4 = 0, we assumed that 79 > 0 and o, € (0,1) (k=0,1,...).
From the first-order optimality condition

Ger1(®) = (1= an)dp(®) + anf (yp) + awp(z — yy)
(1 — ag)ve(® — vi) + apf'(yg) + agp(z — y;) = 0.
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Thus,
1
@ =vp = — [(1 — ap) ok + arpyy — onf' (Yy)]
Yk+1

is the minimal optimal solution of ¢y ().
Finally, from what we proved so far and from the definition

orr1(Yr) = Opr + 5 lyr — virall3
(1 — ar)on(yr) + arf(yz) (13)
= (1—ar) (o5 + Fllyr — vrl3) + anf(yp)-
Now,
1
V1 —Yp = — [(1— a)ye(vr — yp) — anf'(yp)] -

Ye+1

Therefore,
P lon - willl = gy (- an)* Rk — wel3 + o1 () 3 14)
=20 (1 = ar) v (f' (Yr), v — Y] -

Substituting (14) into (13), we obtain the expression for ¢j_ ;. I

Theorem 9.5 Let L > p > 0. Consider f € Si’}lL(]R"), possible with ¢ = 0 (which means that

fe FIL’I(R")). For given xg, vy € R", let us choose ¢§ = f(xo). Consider also 79 > 0 such that

L =2~ = p =2 0. Define the sequences {a}32 1, {}iZo, {yn}ilo, {@etilo {vi}ilo, {05170
and {¢p(x)}32,, as follows:

a_1 = O,
a € (0,1] root of Lad = (1 — o)y + Qnft := Vo1,
OVEVE + Ve+1Tk
Vet ogp

. 1
2, is such that f(znn) < Flu) — 521 )l

Ye =

1
Vi1 = —— (1 — ap)wvr + agpyy — arf (ye)l,
Ve+1
* * a% ! 2
Pri1 = (1 —ar)oyp + arf(yr) — 5 I (yi) Iz
Ve+1
(1 — ag)vk (1
+ (Bl — a3+ (i) ok — wi) )
Vk+1
Vk+1
r+1(x) = Pt ?Hw — w3
k—1
Then, we satisfy all the conditions of Lemma 9.2 for the A\, = H (1 — ay).
i=—1

Proof:
In fact, due to Lemmas 9.3 and 9.4, it just remains to show that oy € (0,1] for (k =0,1,...)

o
such that Z aj = 00. In the special case of = 0, we must show that o, <1 (k=0,1,...). And

k=
finally that ;(mk) < ¢;.
Let us show both using induction hypothesis.
Consider the quadratic equation in «, go(a) := La? + (y0 — p)a — 70 = 0. Notice that its
discriminant A := (g — pu)? + 4L is always positive by the hypothesis. Also, qo(0) = —70 < 0,
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but due to the hypothesis again. Therefore, this equation always has a root ag > 0. Since go(1) =
L—pu>0, ap <1, and we have ag € (0,1]. If 4 =0, and g = 1, we will have L = 0 which implies
~vo = 0 which contradicts our hypothesis. Then «g < 1. In addition, 71 := (1 — ap)vyo + i > 0 and
Y0 + aop > 0. The same arguments are valid for any k. Therefore, o, € (0,1], and o <1 (k =
0,1,...,)if u=0.

Finally, La2 = (1 — ag)yk + o > (1 — ag)p+ agp = p. And we have oy, > , and therefore,

Z ap = 00, if > 0. For the case y = 0, the argument is the same as the proof of Theorem 9.6.
k=0

Now, suppose that for k£ = 0, f(xg) < ¢;. Suppose that the induction hypothesis is valid for
any index equal or smaller than k. Due to the previous lemma,

Gir = (L= oo +onf(yy) - ()1
ag(l —ap)yk (p /
L (§Hyk — o135+ (' (yp)s vk — yk>>

> (1 —ag)f(zr) +anflyg) — ()3

ag(l — o)y (1
+ R (Ll — well3 + (F (i) vn — i) -
Ye+1

Now, since f(x) is convex, f(xx) > f(yi) + (f'(yr), Tk — yi), and we have:

2
X a Yk ap(l — ag)yep
Gri1 = Fye)— 1 (w)lI3+ 1 —an) (f (yp), (Ve—Yp)+Tr—Yp)+— |y —vi[3-
2V 41 V41 2Yk+1

Recall that since f’ is L-Lipschitz continuous, if we apply Lemma 3.4 to y,, and @11 = y;— %f’(yk),
we obtain

Fl) — 57 17 @I > Flann)

Therefore, if we impose
ALYk
Ye+1

it justifies our choice for y;. And putting

(vk —yp)+xp —yp, =0

2
o, 1

2’7k+1 2L

it justifies our choice for ay. Since w > 0, we finally obtain ¢; | > f(xx11) as wished.

The above theorem suggests an algorithm to minimize f € S ( ™.
Notice that in the following optimal gradient method, we don t need the estimated sequence
anymore.

General Scheme for the Optimal Gradient Method
Step 0: Choose xy € R", let 79 > 0 such that L > ~v9 > pu > 0.
Set vy := xg and k := 0.
Step 1: Compute oy, € (0,1] from the equation Lai = (1 — ag)yk + agp.
Step 2:  Set g1 = (1 — o) vk + pt, Yy, == W
Step 3: Compute f(y;) and f'(y;).
Step 4: Find @, such that f(xr11) < f(y;) — 1L||f’(yk)||% using “line search”.

Step 5: Set vpiq: = = a’“)%vﬁxﬁy’“ oS (Yu) , k:=k+1 and go to Step 1.
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