8.1 Exercises

1. Prove Corollary 8.2.

9 The Optimal Gradient Method (First-Order Method, Accelerated Gradient Method, Fast Gradient Method)

This algorithm was proposed for the first time by Nesterov ${ }^{3}$ in 1983. In [Nesterov03], he gives a reinterpretation of the algorithm and provides another justification of it which attains the same complexity bound of the original article.

Definition 9.1 A pair of sequences $\left\{\phi_{k}(\boldsymbol{x})\right\}_{k=0}^{\infty}$ and $\left\{\lambda_{k}\right\}_{k=0}^{\infty}$ with $\lambda_{k} \geq 0$ is called an estimate sequence of the function $f(\boldsymbol{x})$ if

$$
\lambda_{k} \rightarrow 0
$$

and for any $\boldsymbol{x} \in \mathbb{R}^{n}$ and any $k \geq 0$, we have

$$
\phi_{k}(\boldsymbol{x}) \leq\left(1-\lambda_{k}\right) f(\boldsymbol{x})+\lambda_{k} \phi_{0}(\boldsymbol{x}) .
$$

Lemma 9.2 Given an estimate sequence $\left\{\phi_{k}(\boldsymbol{x})\right\}_{k=0}^{\infty},\left\{\lambda_{k}\right\}_{k=0}^{\infty}$, and if for some sequence $\left\{\boldsymbol{x}_{k}\right\}_{k=0}^{\infty}$ we have

$$
f\left(\boldsymbol{x}_{k}\right) \leq \phi_{k}^{*}:=\min _{\boldsymbol{x} \in \mathbb{R}^{n}} \phi_{k}(\boldsymbol{x})
$$

then $f\left(\boldsymbol{x}_{k}\right)-f\left(\boldsymbol{x}^{*}\right) \leq \lambda_{k}\left(\phi_{0}\left(\boldsymbol{x}^{*}\right)-f\left(\boldsymbol{x}^{*}\right)\right) \rightarrow 0$.
Proof:
It follows from the definition.

Lemma 9.3 Assume that

1. $f \in \mathcal{S}_{\mu}^{1}\left(\mathbb{R}^{n}\right)$, possible with $\mu=0$ (which means that $f \in \mathcal{F}^{1}\left(\mathbb{R}^{n}\right)$).
2. $\phi_{0}(\boldsymbol{x})$ is an arbitrary function on \mathbb{R}^{n}.
3. $\left\{\boldsymbol{y}_{k}\right\}_{k=0}^{\infty}$ is an arbitrary sequence in \mathbb{R}^{n}.
4. $\left\{\alpha_{k}\right\}_{k=-1}^{\infty}$ is an arbitrary sequence such that $\alpha_{-1}=0, \alpha_{k} \in(0,1] \quad(k=0,1, \ldots)$, and $\sum_{k=0}^{\infty} \alpha_{k}=$ ∞.

Then the pair of sequences $\left\{\prod_{i=-1}^{k-1}\left(1-\alpha_{i}\right)\right\}_{k=0}^{\infty}$ and $\left\{\phi_{k}(\boldsymbol{x})\right\}_{k=0}^{\infty}$ recursively defined as

$$
\phi_{k+1}(\boldsymbol{x})=\left(1-\alpha_{k}\right) \phi_{k}(\boldsymbol{x})+\alpha_{k}\left[f\left(\boldsymbol{y}_{k}\right)+\left\langle f^{\prime}\left(\boldsymbol{y}_{k}\right), \boldsymbol{x}-\boldsymbol{y}_{k}\right\rangle+\frac{\mu}{2}\left\|\boldsymbol{x}-\boldsymbol{y}_{k}\right\|_{2}^{2}\right]
$$

is an estimate sequence.

[^0]
Proof:

Let us prove by induction on k. For $k=0, \phi_{0}(\boldsymbol{x})=\left(1-\left(1-\alpha_{-1}\right)\right) f(\boldsymbol{x})+\left(1-\alpha_{-1}\right) \phi_{0}(\boldsymbol{x})$ since $\alpha_{-1}=0$. Suppose that the induction hypothesis is valid for any index equal or smaller than k. Since $f \in \mathcal{S}_{\mu}^{1}\left(\mathbb{R}^{n}\right)$,

$$
\begin{aligned}
\phi_{k+1}(\boldsymbol{x}) & =\left(1-\alpha_{k}\right) \phi_{k}(\boldsymbol{x})+\alpha_{k}\left[f\left(\boldsymbol{y}_{k}\right)+\left\langle f^{\prime}\left(\boldsymbol{y}_{k}\right), \boldsymbol{x}-\boldsymbol{y}_{k}\right\rangle+\frac{\mu}{2}\left\|\boldsymbol{x}-\boldsymbol{y}_{k}\right\|_{2}^{2}\right] \\
& \leq\left(1-\alpha_{k}\right) \phi_{k}(\boldsymbol{x})+\alpha_{k} f(\boldsymbol{x}) \\
& =\left(1-\left(1-\alpha_{k}\right) \prod_{i=-1}^{k-1}\left(1-\alpha_{i}\right)\right) f(\boldsymbol{x})+\left(1-\alpha_{k}\right)\left(\phi_{k}(\boldsymbol{x})-\left(1-\prod_{i=-1}^{k-1}\left(1-\alpha_{i}\right)\right) f(\boldsymbol{x})\right) \\
& \leq\left(1-\left(1-\alpha_{k}\right) \prod_{i=-1}^{k-1}\left(1-\alpha_{i}\right)\right) f(\boldsymbol{x})+\left(1-\alpha_{k}\right) \prod_{i=-1}^{k-1}\left(1-\alpha_{i}\right) \phi_{0}(\boldsymbol{x}) \\
& =\left(1-\prod_{i=-1}^{k}\left(1-\alpha_{i}\right)\right) f(\boldsymbol{x})+\prod_{i=-1}^{k}\left(1-\alpha_{i}\right) \phi_{0}(\boldsymbol{x}) .
\end{aligned}
$$

The remaining part is left for exercise.
Lemma 9.4 Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be an arbitrary continuously differentiable function. Also let $\phi_{0}^{*} \in \mathbb{R}$, $\mu \geq 0, \gamma_{0} \geq 0, \boldsymbol{v}_{0} \in \mathbb{R}^{n},\left\{\boldsymbol{y}_{k}\right\}_{k=0}^{\infty}$, and $\left\{\alpha_{k}\right\}_{k=0}^{\infty}$ given arbitrarily sequences such that $\alpha_{-1}=0$, $\alpha_{k} \in(0,1] \quad(k=0,1, \ldots)$. In the special case of $\mu=0$, we further assume that $\gamma_{0}>0$ and $\alpha_{k}<1 \quad(k=0,1, \ldots)$. Let $\phi_{0}(\boldsymbol{x})=\phi_{0}^{*}+\frac{\gamma_{0}}{2}\left\|\boldsymbol{x}-\boldsymbol{v}_{0}\right\|_{2}^{2}$. If we define recursively $\phi_{k+1}(\boldsymbol{x})$ such as the previous lemma:

$$
\phi_{k+1}(\boldsymbol{x})=\left(1-\alpha_{k}\right) \phi_{k}(\boldsymbol{x})+\alpha_{k}\left[f\left(\boldsymbol{y}_{k}\right)+\left\langle f^{\prime}\left(\boldsymbol{y}_{k}\right), \boldsymbol{x}-\boldsymbol{y}_{k}\right\rangle+\frac{\mu}{2}\left\|\boldsymbol{x}-\boldsymbol{y}_{k}\right\|_{2}^{2}\right],
$$

then $\phi_{k+1}(\boldsymbol{x})$ preserve the canonical form

$$
\begin{equation*}
\phi_{k+1}(\boldsymbol{x})=\phi_{k+1}^{*}+\frac{\gamma_{k+1}}{2}\left\|\boldsymbol{x}-\boldsymbol{v}_{k+1}\right\|_{2}^{2} \tag{12}
\end{equation*}
$$

for

$$
\begin{aligned}
\gamma_{k+1}= & \left(1-\alpha_{k}\right) \gamma_{k}+\alpha_{k} \mu \\
\boldsymbol{v}_{k+1}= & \frac{1}{\gamma_{k+1}}\left[\left(1-\alpha_{k}\right) \gamma_{k} \boldsymbol{v}_{k}+\alpha_{k} \mu \boldsymbol{y}_{k}-\alpha_{k} f^{\prime}\left(\boldsymbol{y}_{k}\right)\right] \\
\phi_{k+1}^{*}= & \left(1-\alpha_{k}\right) \phi_{k}^{*}+\alpha_{k} f\left(\boldsymbol{y}_{k}\right)-\frac{\alpha_{k}^{2}}{2 \gamma_{k+1}}\left\|f^{\prime}\left(\boldsymbol{y}_{k}\right)\right\|_{2}^{2} \\
& +\frac{\alpha_{k}\left(1-\alpha_{k}\right) \gamma_{k}}{\gamma_{k+1}}\left(\frac{\mu}{2}\left\|\boldsymbol{y}_{k}-\boldsymbol{v}_{k}\right\|_{2}^{2}+\left\langle f^{\prime}\left(\boldsymbol{y}_{k}\right), \boldsymbol{v}_{k}-\boldsymbol{y}_{k}\right\rangle\right)
\end{aligned}
$$

Proof:
We will use again the induction hypothesis in k. Note that $\phi_{0}^{\prime \prime}(\boldsymbol{x})=\gamma_{0} \boldsymbol{I}$. Now, for any $k \geq 0$,

$$
\phi_{k+1}^{\prime \prime}(\boldsymbol{x})=\left(1-\alpha_{k}\right) \phi_{k}^{\prime \prime}(\boldsymbol{x})+\alpha_{k} \mu \boldsymbol{I}=\left(\left(1-\alpha_{k}\right) \gamma_{k}+\alpha_{k} \mu\right) \boldsymbol{I}=\gamma_{k+1} \boldsymbol{I} .
$$

Therefore, $\phi_{k+1}(\boldsymbol{x})$ is a quadratic function of the form (12). Also, $\gamma_{k+1}>0$ since $\mu>0$ and $\alpha_{k}>0 \quad(k=0,1, \ldots)$; or if $\mu=0$, we assumed that $\gamma_{0}>0$ and $\alpha_{k} \in(0,1) \quad(k=0,1, \ldots)$.

From the first-order optimality condition

$$
\begin{aligned}
\phi_{k+1}^{\prime}(\boldsymbol{x}) & =\left(1-\alpha_{k}\right) \phi_{k}^{\prime}(\boldsymbol{x})+\alpha_{k} f^{\prime}\left(\boldsymbol{y}_{k}\right)+\alpha_{k} \mu\left(\boldsymbol{x}-\boldsymbol{y}_{k}\right) \\
& =\left(1-\alpha_{k}\right) \gamma_{k}\left(\boldsymbol{x}-\boldsymbol{v}_{k}\right)+\alpha_{k} f^{\prime}\left(\boldsymbol{y}_{k}\right)+\alpha_{k} \mu\left(\boldsymbol{x}-\boldsymbol{y}_{k}\right)=0 .
\end{aligned}
$$

Thus,

$$
\boldsymbol{x}=\boldsymbol{v}_{k+1}=\frac{1}{\gamma_{k+1}}\left[\left(1-\alpha_{k}\right) \gamma_{k} \boldsymbol{v}_{k}+\alpha_{k} \mu \boldsymbol{y}_{k}-\alpha_{k} f^{\prime}\left(\boldsymbol{y}_{k}\right)\right]
$$

is the minimal optimal solution of $\phi_{k+1}(\boldsymbol{x})$.
Finally, from what we proved so far and from the definition

$$
\begin{align*}
\phi_{k+1}\left(\boldsymbol{y}_{k}\right) & =\phi_{k+1}^{*}+\frac{\gamma_{k+1}}{2}\left\|\boldsymbol{y}_{k}-\boldsymbol{v}_{k+1}\right\|_{2}^{2} \\
& =\left(1-\alpha_{k}\right) \phi_{k}\left(\boldsymbol{y}_{k}\right)+\alpha_{k} f\left(\boldsymbol{y}_{k}\right) \tag{13}\\
& =\left(1-\alpha_{k}\right)\left(\phi_{k}^{*}+\frac{\gamma_{k}}{2}\left\|\boldsymbol{y}_{k}-\boldsymbol{v}_{k}\right\|_{2}^{2}\right)+\alpha_{k} f\left(\boldsymbol{y}_{k}\right) .
\end{align*}
$$

Now,

$$
\boldsymbol{v}_{k+1}-\boldsymbol{y}_{k}=\frac{1}{\gamma_{k+1}}\left[\left(1-\alpha_{k}\right) \gamma_{k}\left(\boldsymbol{v}_{k}-\boldsymbol{y}_{k}\right)-\alpha_{k} f^{\prime}\left(\boldsymbol{y}_{k}\right)\right] .
$$

Therefore,

$$
\begin{align*}
\frac{\gamma_{k+1}}{2}\left\|\boldsymbol{v}_{k+1}-\boldsymbol{y}_{k}\right\|_{2}^{2}= & \frac{1}{2 \gamma_{k+1}}\left[\left(1-\alpha_{k}\right)^{2} \gamma_{k}^{2}\left\|\boldsymbol{v}_{k}-\boldsymbol{y}_{k}\right\|_{2}^{2}+\alpha_{k}^{2}\left\|f^{\prime}\left(\boldsymbol{y}_{k}\right)\right\|_{2}^{2}\right. \tag{14}\\
& \left.-2 \alpha_{k}\left(1-\alpha_{k}\right) \gamma_{k}\left\langle f^{\prime}\left(\boldsymbol{y}_{k}\right), \boldsymbol{v}_{k}-\boldsymbol{y}_{k}\right\rangle\right] .
\end{align*}
$$

Substituting (14) into (13), we obtain the expression for ϕ_{k+1}^{*}.
Theorem 9.5 Let $L \geq \mu \geq 0$. Consider $f \in \mathcal{S}_{\mu, L}^{1,1}\left(\mathbb{R}^{n}\right)$, possible with $\mu=0$ (which means that $f \in \mathcal{F}_{L}^{1,1}\left(\mathbb{R}^{n}\right)$). For given $\boldsymbol{x}_{0}, \boldsymbol{v}_{0} \in \mathbb{R}^{n}$, let us choose $\phi_{0}^{*}=f\left(\boldsymbol{x}_{0}\right)$. Consider also $\gamma_{0}>0$ such that $L \geq \gamma_{0} \geq \mu \geq 0$. Define the sequences $\left\{\alpha_{k}\right\}_{k=-1}^{\infty},\left\{\gamma_{k}\right\}_{k=0}^{\infty},\left\{\boldsymbol{y}_{k}\right\}_{k=0}^{\infty},\left\{\boldsymbol{x}_{k}\right\}_{k=0}^{\infty},\left\{\boldsymbol{v}_{k}\right\}_{k=0}^{\infty},\left\{\phi_{k}^{*}\right\}_{k=0}^{\infty}$, and $\left\{\phi_{k}(\boldsymbol{x})\right\}_{k=0}^{\infty}$ as follows:

$$
\begin{aligned}
& \alpha_{-1}=0, \\
& \alpha_{k} \in(0,1] \quad \text { root of } \quad L \alpha_{k}^{2}=\left(1-\alpha_{k}\right) \gamma_{k}+\alpha_{k} \mu:=\gamma_{k+1} \text {, } \\
& \boldsymbol{y}_{k}=\frac{\alpha_{k} \gamma_{k} \boldsymbol{v}_{k}+\gamma_{k+1} \boldsymbol{x}_{k}}{\gamma_{k}+\alpha_{k} \mu}, \\
& \boldsymbol{x}_{k} \text { is such that } f\left(\boldsymbol{x}_{k+1}\right) \leq f\left(\boldsymbol{y}_{k}\right)-\frac{1}{2 L}\left\|f^{\prime}\left(\boldsymbol{y}_{k}\right)\right\|_{2}^{2}, \\
& \boldsymbol{v}_{k+1}=\frac{1}{\gamma_{k+1}}\left[\left(1-\alpha_{k}\right) \gamma_{k} \boldsymbol{v}_{k}+\alpha_{k} \mu \boldsymbol{y}_{k}-\alpha_{k} f^{\prime}\left(\boldsymbol{y}_{k}\right)\right] \text {, } \\
& \phi_{k+1}^{*}=\left(1-\alpha_{k}\right) \phi_{k}^{*}+\alpha_{k} f\left(\boldsymbol{y}_{k}\right)-\frac{\alpha_{k}^{2}}{2 \gamma_{k+1}}\left\|f^{\prime}\left(\boldsymbol{y}_{k}\right)\right\|_{2}^{2} \\
& +\frac{\alpha_{k}\left(1-\alpha_{k}\right) \gamma_{k}}{\gamma_{k+1}}\left(\frac{\mu}{2}\left\|\boldsymbol{y}_{k}-\boldsymbol{v}_{k}\right\|_{2}^{2}+\left\langle f^{\prime}\left(\boldsymbol{y}_{k}\right), \boldsymbol{v}_{k}-\boldsymbol{y}_{k}\right\rangle\right), \\
& \phi_{k+1}(\boldsymbol{x})=\quad \phi_{k+1}^{*}+\frac{\gamma_{k+1}}{2}\left\|\boldsymbol{x}-\boldsymbol{v}_{k+1}\right\|_{2}^{2} .
\end{aligned}
$$

Then, we satisfy all the conditions of Lemma 9.2 for the $\lambda_{k}=\prod_{i=-1}^{k-1}\left(1-\alpha_{k}\right)$.

Proof:

In fact, due to Lemmas 9.3 and 9.4 , it just remains to show that $\alpha_{k} \in(0,1]$ for $(k=0,1, \ldots)$ such that $\sum_{k=0}^{\infty} \alpha_{k}=\infty$. In the special case of $\mu=0$, we must show that $\alpha_{k}<1 \quad(k=0,1, \ldots)$. And finally that $f\left(\boldsymbol{x}_{k}\right) \leq \phi_{k}^{*}$.

Let us show both using induction hypothesis.
Consider the quadratic equation in $\alpha, q_{0}(\alpha):=L \alpha^{2}+\left(\gamma_{0}-\mu\right) \alpha-\gamma_{0}=0$. Notice that its discriminant $\Delta:=\left(\gamma_{0}-\mu\right)^{2}+4 \gamma_{0} L$ is always positive by the hypothesis. Also, $q_{0}(0)=-\gamma_{0}<0$,
but due to the hypothesis again. Therefore, this equation always has a root $\alpha_{0}>0$. Since $q_{0}(1)=$ $L-\mu \geq 0, \alpha_{0} \leq 1$, and we have $\alpha_{0} \in(0,1]$. If $\mu=0$, and $\alpha_{0}=1$, we will have $L=0$ which implies $\gamma_{0}=0$ which contradicts our hypothesis. Then $\alpha_{0}<1$. In addition, $\gamma_{1}:=\left(1-\alpha_{0}\right) \gamma_{0}+\alpha_{0} \mu>0$ and $\gamma_{0}+\alpha_{0} \mu>0$. The same arguments are valid for any k. Therefore, $\alpha_{k} \in(0,1]$, and $\alpha_{k}<1 \quad(k=$ $0,1, \ldots$,) if $\mu=0$.

Finally, $L \alpha_{k}^{2}=\left(1-\alpha_{k}\right) \gamma_{k}+\alpha_{k} \mu \geq\left(1-\alpha_{k}\right) \mu+\alpha_{k} \mu=\mu$. And we have $\alpha_{k} \geq \sqrt{\frac{\mu}{L}}$, and therefore, $\sum_{k=0}^{\infty} \alpha_{k}=\infty$, if $\mu>0$. For the case $\mu=0$, the argument is the same as the proof of Theorem 9.6.

Now, suppose that for $k=0, f\left(\boldsymbol{x}_{0}\right) \leq \phi_{0}^{*}$. Suppose that the induction hypothesis is valid for any index equal or smaller than k. Due to the previous lemma,

$$
\begin{aligned}
\phi_{k+1}^{*}= & \left(1-\alpha_{k}\right) \phi_{k}^{*}+\alpha_{k} f\left(\boldsymbol{y}_{k}\right)-\frac{\alpha_{k}^{2}}{2 \gamma_{k+1}}\left\|f^{\prime}\left(\boldsymbol{y}_{k}\right)\right\|_{2}^{2} \\
& +\frac{\alpha_{k}\left(1-\alpha_{k}\right) \gamma_{k}}{\gamma_{k+1}}\left(\frac{\mu}{2}\left\|\boldsymbol{y}_{k}-\boldsymbol{v}_{k}\right\|_{2}^{2}+\left\langle f^{\prime}\left(\boldsymbol{y}_{k}\right), \boldsymbol{v}_{k}-\boldsymbol{y}_{k}\right\rangle\right) \\
\geq & \left(1-\alpha_{k}\right) f\left(\boldsymbol{x}_{k}\right)+\alpha_{k} f\left(\boldsymbol{y}_{k}\right)-\frac{\alpha_{k}^{2}}{2 \gamma_{k+1}}\left\|f^{\prime}\left(\boldsymbol{y}_{k}\right)\right\|_{2}^{2} \\
& +\frac{\alpha_{k}\left(1-\alpha_{k}\right) \gamma_{k}}{\gamma_{k+1}}\left(\frac{\mu}{2}\left\|\boldsymbol{y}_{k}-\boldsymbol{v}_{k}\right\|_{2}^{2}+\left\langle f^{\prime}\left(\boldsymbol{y}_{k}\right), \boldsymbol{v}_{k}-\boldsymbol{y}_{k}\right\rangle\right) .
\end{aligned}
$$

Now, since $f(\boldsymbol{x})$ is convex, $f\left(\boldsymbol{x}_{k}\right) \geq f\left(\boldsymbol{y}_{k}\right)+\left\langle f^{\prime}\left(\boldsymbol{y}_{k}\right), \boldsymbol{x}_{k}-\boldsymbol{y}_{k}\right\rangle$, and we have:

$$
\phi_{k+1}^{*} \geq f\left(\boldsymbol{y}_{k}\right)-\frac{\alpha_{k}^{2}}{2 \gamma_{k+1}}\left\|f^{\prime}\left(\boldsymbol{y}_{k}\right)\right\|_{2}^{2}+\left(1-\alpha_{k}\right)\left\langle f^{\prime}\left(\boldsymbol{y}_{k}\right), \frac{\alpha_{k} \gamma_{k}}{\gamma_{k+1}}\left(\boldsymbol{v}_{k}-\boldsymbol{y}_{k}\right)+\boldsymbol{x}_{k}-\boldsymbol{y}_{k}\right\rangle+\frac{\alpha_{k}\left(1-\alpha_{k}\right) \gamma_{k} \mu}{2 \gamma_{k+1}}\left\|\boldsymbol{y}_{k}-\boldsymbol{v}_{k}\right\|_{2}^{2} .
$$

Recall that since f^{\prime} is L-Lipschitz continuous, if we apply Lemma 3.4 to \boldsymbol{y}_{k} and $\boldsymbol{x}_{k+1}=\boldsymbol{y}_{k}-\frac{1}{L} f^{\prime}\left(\boldsymbol{y}_{k}\right)$, we obtain

$$
f\left(\boldsymbol{y}_{k}\right)-\frac{1}{2 L}\left\|f^{\prime}\left(\boldsymbol{y}_{k}\right)\right\|_{2}^{2} \geq f\left(\boldsymbol{x}_{k+1}\right) .
$$

Therefore, if we impose

$$
\frac{\alpha_{k} \gamma_{k}}{\gamma_{k+1}}\left(\boldsymbol{v}_{k}-\boldsymbol{y}_{k}\right)+\boldsymbol{x}_{k}-\boldsymbol{y}_{k}=\mathbf{0}
$$

it justifies our choice for \boldsymbol{y}_{k}. And putting

$$
\frac{\alpha_{k}^{2}}{2 \gamma_{k+1}}=\frac{1}{2 L}
$$

it justifies our choice for α_{k}. Since $\frac{\alpha_{k}\left(1-\alpha_{k}\right) \gamma_{k} \mu}{\gamma_{k+1}} \geq 0$, we finally obtain $\phi_{k+1}^{*} \geq f\left(\boldsymbol{x}_{k+1}\right)$ as wished.
The above theorem suggests an algorithm to minimize $f \in \mathcal{S}_{\mu, L}^{1,1}\left(\mathbb{R}^{n}\right)$.
Notice that in the following optimal gradient method, we don't need the estimated sequence anymore.

General Scheme for the Optimal Gradient Method

Step 0: Choose $\boldsymbol{x}_{0} \in \mathbb{R}^{n}$, let $\gamma_{0}>0$ such that $L \geq \gamma_{0} \geq \mu \geq 0$.
Set $\boldsymbol{v}_{0}:=\boldsymbol{x}_{0}$ and $k:=0$.
Step 1: Compute $\alpha_{k} \in(0,1]$ from the equation $L \alpha_{k}^{2}=\left(1-\alpha_{k}\right) \gamma_{k}+\alpha_{k} \mu$.
Step 2: Set $\gamma_{k+1}:=\left(1-\alpha_{k}\right) \gamma_{k}+\alpha_{k} \mu, \boldsymbol{y}_{k}:=\frac{\alpha_{k} \gamma_{k} \boldsymbol{v}_{k}+\gamma_{k+1} \boldsymbol{x}_{k}}{\gamma_{k}+\alpha_{k} \mu}$.
Step 3: Compute $f\left(\boldsymbol{y}_{k}\right)$ and $f^{\prime}\left(\boldsymbol{y}_{k}\right)$.
Step 4: Find \boldsymbol{x}_{k+1} such that $f\left(\boldsymbol{x}_{k+1}\right) \leq f\left(\boldsymbol{y}_{k}\right)-\frac{1}{2 L}\left\|f^{\prime}\left(\boldsymbol{y}_{k}\right)\right\|_{2}^{2}$ using "line search".
Step 5: Set $\boldsymbol{v}_{k+1}:=\frac{\left(1-\alpha_{k}\right) \gamma_{k} \boldsymbol{v}_{k}+\alpha_{k} \mu \boldsymbol{y}_{k}-\alpha_{k} f^{\prime}\left(\boldsymbol{y}_{k}\right)}{\gamma_{k+1}}, k:=k+1$ and go to Step 1.

[^0]: ${ }^{3} \mathrm{Y}$. Nesterov, "A method for solving the convex programming problem with convergence rate $\mathcal{O}\left(1 / k^{2}\right)$," Dokl. Akad. Nauk SSSR 269 (1983), pp. 543-547.

