
Let us evaluate the result of one step of the steepest descent method.
Consider y = x− hf ′(x). From Lemma 3.4,

f(y) ≤ f(x) + ⟨f ′(x),y − x⟩+ L

2
∥y − x∥22

= f(x)− h∥f ′(x)∥22 +
h2L

2
∥f ′(x)∥22

= f(x)− h

(
1− h

2
L

)
∥f ′(x)∥22. (5)

Thus, one step of the steepest descent method decreases the value of the objective function at
least as follows for h∗ = 1/L.

f(y) ≤ f(x)− 1

2L
∥f ′(x)∥22.

Now, for the Goldstein-Armijo Rule, since xk+1 = xk − hkf
′(xk), we have:

f(xk)− f(xk+1) ≤ βhk∥f ′(xk)∥22,

and from (5)

f(xk)− f(xk+1) ≥ hk

(
1− hk

2
L

)
∥f ′(xk)∥22.

Therefore, hk ≥ 2(1− β)/L.
Also, substituting in

f(xk)− f(xk+1) ≥ αhk∥f ′(xk)∥22 ≥
2

L
α(1− β)∥f ′(xk)∥22.

Thus, in the three step-size strategies excepting the BB step size considered here, we can say
that

f(xk)− f(xk+1) ≥
ω

L
∥f ′(xk)∥22

for some positive constant ω.
Summing up the above inequality we have:

ω

L

N∑
k=0

∥f ′(xk)∥22 ≤ f(x0)− f(xN+1) ≤ f(x0)− f∗

where f∗ is the optimal value of the problem.
As a simple consequence we have

∥f ′(xk)∥2 → 0 as k → ∞.

Finally,

g∗N := min
0≤k≤N

∥f ′(xk)∥2 ≤
1√

N + 1

[
L

ω
(f(x0)− f∗)

]1/2
. (6)

Remark 5.8 g∗N → 0, but we cannot say anything about the rate of convergence of the sequence
{f(xk)} or {xk}.
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Example 5.9 Consider the function f(x, y) = 1
2x

2 + 1
4y

4 − 1
2y

2. (0,−1)T and (0, 1)T are local
minimal solutions, but (0, 0)T is a stationary point.

If we start the steepest descent method from (1, 0)T , we will only converge to the stationary
point.

We focus now on the following problem class:

Model: 1. min
x∈Rn

f(x)

2. f ∈ C1,1
L (Rn)

3. f(x) is bounded from below
Oracle: Only function values are available
Approximate solution: Find x̄ ∈ Rn such that f(x̄) ≤ f(x0) and ∥f ′(x̄)∥2 < ϵ

From (6), we have

g∗N < ε if N + 1 >
L

ωε2
(f(x0)− f∗).

Remark 5.10 This is much better than the result of Theorem 5.6, since it does not depend on n.

Finally, consider the following problem under Assumption 5.11.

min
x∈Rn

f(x)

Assumption 5.11

1. f ∈ C2,2
M (Rn);

2. There is a local minimum x∗ of the function f(x);

3. We know some bound 0 < ℓ ≤ L < ∞ for the Hessian at x∗:

ℓI ⪯ f ′′(x∗) ⪯ LI;

4. Our starting point x0 is close enough to x∗.

Theorem 5.12 Let f(x) satisfy our assumptions above and let the starting point x0 be close
enough to a local minimum:

r0 = ∥x0 − x∗∥2 < r̄ :=
2ℓ

M
.

Then, the steepest descent method with step-size h∗ = 2/(L+ ℓ) converges as follows:

∥xk − x∗∥2 ≤
r̄r0

r̄ − r0

(
1− 2ℓ

L+ 3ℓ

)k

.

This rate of convergence is called (R-)linear.

Proof:
In the steepest descent method, the iterates are xk+1 = xk − hkf

′(xk).
Since f ′(x∗) = 0,

f ′(xk) = f ′(xk)− f ′(x∗) =

∫ 1

0
f ′′(x∗ + τ(xk − x∗))(xk − x∗)dτ = Gk(xk − x∗),
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and therefore,

xk+1 − x∗ = xk − x∗ − hkGk(xk − x∗) = (I − hkGk)(xk − x∗).

Let rk = ∥xk − x∗∥2. From Lemma 3.6,

f ′′(x∗)− τMrkI ⪯ f ′′(x∗ + τ(xk − x∗)) ⪯ f ′′(x∗) + τMrkI.

Integrating all parts from 0 to 1 and using our hypothesis,

(ℓ− rk
2
M)I ⪯ Gk ⪯ (L+

rk
2
M)I.

Therefore, (
1− hk(L+

rk
2
M)
)
I ⪯ I − hkGk ⪯

(
1− hk(ℓ−

rk
2
M)
)
I.

We arrive at
∥I − hkGk∥2 ≤ max{|ak(hk)|, |bk(hk)|}

where ak(h) = 1− h(ℓ− rk
2 M) and bk(h) = h(L+ rk

2 M)− 1.
Notice that ak(0) = 1 and bk(0) = −1.
Now, let us use our hypothesis that r0 < r̄.
When ak(h) = bk(h), we have 1− h(ℓ− rk

2 M) = h(L+ rk
2 M)− 1, and therefore

h∗k =
2

L+ ℓ
.

(Surprisingly, it does not depend neither on M nor rk). Finally,

rk+1 = ∥xk+1 − x∗∥2 ≤
(
1− 2

L+ ℓ

(
ℓ− rk

2
M
))

∥xk − x∗∥2.

That is,

rk+1 ≤
(
L− ℓ

L+ ℓ
+

rkM

L+ ℓ

)
rk.

and rk+1 < rk < r̄.
Now, let us analyze the rate of convergence. Multiplying the above inequality by M/(L+ ℓ),

Mrk+1

L+ ℓ
≤ M(L− ℓ)

(L+ ℓ)2
rk +

M2r2k
(L+ ℓ)2

.

Calling αk = Mrk
L+ℓ and q = 2ℓ

L+ℓ , we have

αk+1 ≤ (1− q)αk + α2
k = αk(1 + αk − q) =

αk(1− (αk − q)2)

1− (αk − q)
. (7)

Now, since rk < 2ℓ
M , αk − q = Mrk

L+ℓ − 2ℓ
L+ℓ < 0, and 1 + (αk − q) = L−ℓ

L+ℓ +
Mrk
L+ℓ > 0. Therefore,

−1 < αk − q < 0, and (7) becomes ≤ αk
1+q−αk

.

1

αk+1
≥ 1 + q

αk
− 1.

q

αk+1
− 1 ≥ q(1 + q)

αk
− q − 1 = (1 + q)

(
q

αk
− 1

)
.

and then,

q

αk
− 1 ≥ (1 + q)k

(
q

α0
− 1

)
= (1 + q)k

(
2ℓ

L+ ℓ

L+ ℓ

Mr0
− 1

)
= (1 + q)k

(
r̄

r0
− 1

)
.

Finally, we arrive at

rk = ∥xk − x∗∥2 ≤
r̄r0

r̄ − r0

(
1− 2ℓ

L+ 3ℓ

)k

.
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5.4 The Newton Method

Example 5.13 Let us apply the Newton method to find the root of the following function

ϕ(t) =
t√

1 + t2
.

Clearly t∗ = 0.
The Newton method will give:

tk+1 = tk −
ϕ(tk)

ϕ′(tk)
= tk − tk(1 + t2k) = −t3k.

Therefore, the method converges if |t0| < 1, it oscillates if |t0| = 1, and finally, diverges if |t0| > 1.

Assumption 5.14

1. f ∈ C2,2
M (Rn);

2. There is a local minimum x∗ of the function f(x);

3. The Hessian is positive definite at x∗:

f ′′(x∗) ⪰ ℓI, ℓ > 0;

4. Our starting point x0 is close enough to x∗.

Theorem 5.15 Let the function f(x) satisfy the above assumptions. Suppose that the initial
starting point x0 is close enough to x∗:

∥x0 − x∗∥2 < r̄ :=
2ℓ

3M
.

Then ∥xk − x∗∥2 < r̄ for all k of the Newton method and it converges quadratically:

∥xk+1 − x∗∥2 ≤
M∥xk − x∗∥22

2(ℓ−M∥xk − x∗∥2)
.

Proof:
Let rk = ∥xk − x∗∥2. From Lemma 3.6 and the assumption, we have for k = 0,

f ′′(x0) ⪰ f ′′(x∗)−Mr0I ⪰ (ℓ−Mr0)I. (8)

Since r0 < r̄ = 2ℓ
3M < ℓ

M , we have ℓ−Mr0 > 0 and therefore, f ′′(x0) is invertible.
Consider the Newton method for k = 0, x1 = x0 − [f ′′(x0)]

−1f ′(x0).
Then

x1 − x∗ = x0 − x∗ − [f ′′(x0)]
−1f ′(x0)

= x0 − x∗ − [f ′′(x0)]
−1

∫ 1

0
f ′′(x∗ + τ(x0 − x∗))(x0 − x∗)dτ

= [f ′′(x0)]
−1G0(x0 − x∗)

where G0 =
∫ 1
0 [f

′′(x0)− f ′′(x∗ + τ(x0 − x∗))]dτ .
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Then

∥G0∥2 =

∥∥∥∥∫ 1

0
[f ′′(x0)− f ′′(x∗ + τ(x0 − x∗))]dτ

∥∥∥∥
2

≤
∫ 1

0
∥f ′′(x0)− f ′′(x∗ + τ(x0 − x∗))∥2dτ

≤
∫ 1

0
M |1− τ |r0dτ =

r0
2
M.

From (8),
∥[f ′′(x0)]

−1∥2 ≤ (ℓ−Mr0)
−1.

Then

r1 ≤
Mr20

2(ℓ−Mr0)
.

Since r0 < r̄ = 2ℓ
3M , Mr0

2(ℓ−Mr0)
< 1, and r1 < r0.

One can see now that the same argument is valid for all k’s.

• Comparing this result with the rate of convergence of the steepest descent, we see that the
Newton method is much faster.

• Surprisingly, the region of quadratic convergence of the Newton method is almost the same as
the region of the linear convergence of the gradient method.

∥x0 − x∗∥2 <
2ℓ

M
(steepest descent method) ∥x0 − x∗∥2 <

2ℓ

3M
(Newton method)

• This justifies a standard recommendation to use the steepest descent method only at the
initial stage of the minimization process in order to get close to a local minimum and then
perform the Newton method to refine.

5.5 The Conjugate Gradient Methods

The conjugate gradient methods were initially proposed for minimizing convex quadratic functions.
Consider the problem

min
x∈Rn

f(x)

with f(x) = α+ ⟨a,x⟩+ 1
2⟨Ax,x⟩ and A ≻ O. Since its minimal solution is x∗ = −A−1a, we can

rewrite f(x) as:

f(x) = α− ⟨Ax∗,x⟩+ 1

2
⟨Ax,x⟩

= α− 1

2
⟨Ax∗,x∗⟩+ 1

2
⟨A(x− x∗),x− x∗⟩.

Thus, f∗ = α− 1
2⟨Ax∗,x∗⟩ and f ′(x) = A(x− x∗).

Definition 5.16 Given a starting point x0, the linear Krylov subspaces is defined as

Lk := Lin{A(x0 − x∗), . . . ,Ak(x0 − x∗)}, k ≥ 1.
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