Geometric group theory Summary of Lecture 13

6.6. Exponential growth of distances.

Fix a basepoint $p \in X$.
We write

$$
\begin{gathered}
N(p, r)=\{y \in X \mid d(p, y) \leq r\}, \\
S(p, r)=\{y \in X \mid d(p, y)=r\}, \\
N^{0}(p, r)=N(x, r) \backslash S(p, r) .
\end{gathered}
$$

We will write $k_{0}=6 k$ (so that, by Lemma 6.5 , geodesic triangles are " k_{0}-thin" in the sense that each side lies in a k_{0}-neighbourhood of the union of the other two.)

Lemma 6.14: Suppose that α, β are paths with the same endpoints, and with β geodesic. Suppose that length $(\gamma) \leq 2^{n} k_{0}$, where $n \in \mathbf{N}$, with $n \geq 1$. Then $\beta \subseteq N\left(\alpha, n k_{0}\right)$.

Proof : By induction on n.
If $n=1$, then length $(\beta) \leq \operatorname{length}(\alpha) \leq 2 k_{0}$, so $\beta \subseteq N\left(\alpha, k_{0}\right)$.
If $n>1$, write $\alpha=\alpha_{1} \cup \alpha_{2}$, where α_{i} are subpaths of lengtg $=\mathrm{h}$ at most $2^{n-1} k_{0}$. Let β_{i} be a geodesic with the same endpoints as α_{i}. Thus, $\beta, \beta_{1}, \beta_{2}$ is a geodesic triangle, and so, by Lemma 6.5, $\beta \subseteq N\left(\beta_{1} \cup \beta_{2}, k_{0}\right)$. By the inductive hypothesis, $\beta_{i} \subseteq N\left(\alpha_{i},(n-1) k_{0}\right)$, and so $\beta \subseteq N\left(\alpha, n k_{0}\right)$ as claimed.

Corollary 6.15 : There are constants $\mu_{0}>0$ and $K \geq 0$, depending only on the constant of hyperbolicity of X, with the following property. Suppose that β is a geodesic segment with endpoints x, y and let p be its midpoint. Let $r=d(p, x)=d(p, y)$. Suppose that α is a path from x to y with $d(p, \alpha) \geq r$. Then

$$
\text { length } \alpha \geq e^{\mu_{0} r}-K
$$

Proof: Let $n=\left\lfloor r / k_{0}\right\rfloor-1$.
If $n \geq 1$, then length $(\beta) \geq 2^{n} k_{0}$, otherwise $d(p, \alpha) \leq n k_{0}<r$, giving a contradiction. If $n=0$, then $r \leq 2 k$, so $e^{\mu_{0} r}-K \leq 0$, provided we chose $K \geq e^{\mu_{0} k}$, so there is nothing to prove.

The following is a generalisation of Corollary 16.5. We leave the proof of an exercise (based on Lemma 16.4). (It was proven by a different method in the book.)

Proposition 6.16 : There are constants $\mu>0$ and $K \geq 0$ such that for all $r \geq 0$, if α is a path in $X \backslash N^{0}(p, r)$ connecting $x, y \in S(x, r)$, then

$$
\text { length } \alpha \geq e^{\mu d(x, y)}-K
$$

Proof : Exercise.
(Note that Corollary 6.15 is a special case of Proposition 6.16, on setting $\mu=2 \mu_{0}$.)
Remark : It turns out that the exponential growth of distances gives another formulation of hyperbolicity - essentially taking the conclusion of Proposition 6.16 as a hypothesis.

6.7. Quasigeodesics.

In what follows we frequently identify a path in X with its image as a subset of X.
Given two point, x, y in a path α, we shall write $\alpha[x, y]$ for the segment of α beween x and y.

Definition : A path, β, is a (λ, h)-quasigeodesic, with respect to constants $\lambda \geq 1$ and $h \geq 0$, if for all $x, y \in \beta$, length $(\beta[x, y]) \leq \lambda d(x, y)+h$.
A quasigeodesic is a path that is (λ, h)-quasigeodesic for some λ and h.
In other words, it takes the shortest route to within certain linear bounds.
Note: a $(1, h)$-quasigeodesic is the same as an h-taut path.
Suppose that (X, d) is k-hyperbolic.
Proposition 6.17 : Suppose that α is a geodesic, and β is a (λ, h)-quasigeodesic with the same endpoints. Then

$$
\begin{aligned}
& \beta \subseteq N(\alpha, r) \\
& \alpha \subseteq N(\beta, r)
\end{aligned}
$$

where r depends only on λ, h, and the hyperbolicity constant k.
Proof: We first show that α lies a bounded distance from β.
(In other words, we proceed in the opposite order from Lemma 6.4.)
Let a, b be the endpoints of α.
Choose $p \in \alpha$ so as to maximise $d(p, \beta)=t$, say.
Let $a_{0}, a_{1} \in[a, p]$ be points with $d\left(p, a_{0}\right)=t$ and $d\left(p, a_{1}\right)=2 t$.
The point a_{0} certainly exists, since $d(p, a) \geq t$.
If $d(p, a)<2 t$, we set $a_{1}=a$ instead.

Now $d\left(a_{1}, \beta\right) \leq t$, and so there is some point $a_{2} \in \beta$ with $d\left(a_{1}, a_{2}\right) \leq t$. If $a_{1}=a$, we set $a_{2}=a$.

We similarly define points b_{0}, b_{1}, b_{2}
Note that $d\left(a_{2}, b_{2}\right) \leq 6 t$.
Let

$$
\delta=\beta\left[a_{2}, b_{2}\right],
$$

and let

$$
\gamma=\left[a_{0}, a_{1}\right] \cup\left[a_{1}, a_{2}\right] \cup \delta \cup\left[b_{2}, b_{1}\right] \cup\left[b_{1}, b_{0}\right] .
$$

Note that $\gamma \cap N^{0}(p, t)=\emptyset$. Since β is quasigeodesic,

$$
\begin{aligned}
\text { length } \delta & \leq \lambda d\left(a_{2}, b_{2}\right)+h \\
& \leq 6 \lambda t+h,
\end{aligned}
$$

and so

$$
\begin{aligned}
\text { length } \gamma & \leq 4 t+\text { length } \delta \\
& \leq(6 \lambda+4) t+h .
\end{aligned}
$$

On the other hand, $d\left(a_{0}, b_{0}\right)=2 t$, and γ does not meet $N^{0}(p, t)$.
Thus applying Corollary 6.15 (with $\mu=2 \mu_{0}$) or Proposition 6.16 , we get

$$
\text { length } \gamma \geq e^{\mu(2 t)}-K
$$

Putting these together we get

$$
e^{2 \mu t} \leq(6 \lambda+4) t+h+K
$$

which places an upper bound of t in terms of λ, h, μ, K, and hence in terms of λ, h and k.
To show that β lies in a bounded neighbourhood of α, one can now use a connectedness argument similar to that use in Lemma 6.4 (with the roles of α and β interchanged).

Note: (after doubling the constant r) Propositon 6.17 applies equally well to two quasigeodesics, α and β with the same endpoints.

Using Proposition 6.17, we see that we can formulate hyperbolicity equally well using quasigeodesic triangles, that is where α, β, γ are assumed quasigeodesic with fixed constants:

Lemma 6.18: Any (λ, k)-quasigeodesic triangle (α, β, γ) has a t-centre, where t depends only on λ, h and k.

Proof : Let $\left(\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}\right)$ be a geodesic triangle with the same vertices.
Applying Proposition 6.17 , we see that any k-centre of $\left(\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}\right)$ will be a $(k+r)$-centre for (α, β, γ).

6.8. Hausdorff distances.

Definition : Suppose P, Q are subsets of a metric space (X, d). We define the Hausdorff distance between P and Q as the infimum of those $r \in[0, \infty]$ for which $P \subseteq N(Q, r)$ and $Q \subseteq N(P, r)$.

Exercise: This is a pseudometric on the set of all bounded subsets of X.
(It is only a pseudometric, since the Hausdorff distance between a set and its closure is 0 .) Restricted to the set of closed subsets of X, this is a metric.

Note: Proposition 6.17 implies that the Hausdorff distance between two quasigeodesics with the same endpoints is bounded in terms of the quasigeodesic and hyperbolicity constants.

6.9. Quasi-isometry invariance of hyperbolicity.

Suppose that (X, d) and $\left(X^{\prime}, d^{\prime}\right)$ are geodesic spaces and that $\phi: X \longrightarrow X^{\prime}$ is a quasiisometry.
We would like to say that the image of a geodesic is a quasi-geodesic, but this is complicated by the fact that quasi-isometries are not assumed continuous. The following technical discussion is designed to get around that point.

Fix some $h>0$.
Suppose that α is a geodesic in X from x to y. Choose points

$$
x=x_{0}, x_{1}, \ldots, x_{n}=y
$$

along α so that $d\left(x_{i}, x_{i+1}\right) \leq h$ and $n \leq l / h \leq n+1$.
Let $y_{i}=\phi\left(x_{i}\right) \in X^{\prime}$.
Let $\bar{\alpha}=\left[y_{0}, y_{1}\right] \cup\left[y_{1}, y_{2}\right] \cup \cdots \cup\left[y_{n-1}, y_{n}\right]$.
Exercise: If α is a geodesic in X and $\bar{\alpha}$ constructed as above, then $\bar{\alpha}$ is quasigeodesic, and the Hausdorff distance between $\bar{\alpha}$ and $\phi(\alpha)$ is bounded. As usual, the statement is uniform in the sense that the constants of the conclusion depend only on those of the hypotheses and our choice of h.

We will continue to a proof of quasi-isometry invariance of hyperbolicity next time.

