
Geometric group theory
Summary of Lecture 13

6.6. Exponential growth of distances.

Fix a basepoint p ∈ X.

We write
N(p, r) = {y ∈ X | d(p, y) ≤ r},

S(p, r) = {y ∈ X | d(p, y) = r},

N0(p, r) = N(x, r) \ S(p, r).

We will write k0 = 6k (so that, by Lemma 6.5, geodesic triangles are “k0-thin” in the sense
that each side lies in a k0-neighbourhood of the union of the other two.)

Lemma 6.14 : Suppose that α, β are paths with the same endpoints, and with β geodesic.
Suppose that length(γ) ≤ 2nk0, where n ∈ N, with n ≥ 1. Then β ⊆ N(α, nk0).

Proof : By induction on n.

If n = 1, then length(β) ≤ length(α) ≤ 2k0, so β ⊆ N(α, k0).

If n > 1, write α = α1 ∪α2, where αi are subpaths of lengtg=h at most 2n−1k0. Let βi be
a geodesic with the same endpoints as αi. Thus, β, β1, β2 is a geodesic triangle, and so, by
Lemma 6.5, β ⊆ N(β1 ∪ β2, k0). By the inductive hypothesis, βi ⊆ N(αi, (n− 1)k0), and
so β ⊆ N(α, nk0) as claimed. ♦

Corollary 6.15 : There are constants µ0 > 0 and K ≥ 0, depending only on the constant
of hyperbolicity of X, with the following property. Suppose that β is a geodesic segment
with endpoints x, y and let p be its midpoint. Let r = d(p, x) = d(p, y). Suppose that α is
a path from x to y with d(p, α) ≥ r. Then

lengthα ≥ eµ0r −K.

Proof : Let n = br/k0c − 1.

If n ≥ 1, then length(β) ≥ 2nk0, otherwise d(p, α) ≤ nk0 < r, giving a contradiction.

If n = 0, then r ≤ 2k, so eµ0r −K ≤ 0, provided we chose K ≥ eµ0k, so there is nothing
to prove. ♦

The following is a generalisation of Corollary 16.5. We leave the proof of an exercise (based
on Lemma 16.4). (It was proven by a different method in the book.)
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Proposition 6.16 : There are constants µ > 0 and K ≥ 0 such that for all r ≥ 0, if α
is a path in X \N0(p, r) connecting x, y ∈ S(x, r), then

lengthα ≥ eµd(x,y) −K.

Proof : Exercise. ♦
(Note that Corollary 6.15 is a special case of Proposition 6.16, on setting µ = 2µ0.)

Remark : It turns out that the exponential growth of distances gives another formulation
of hyperbolicity — essentially taking the conclusion of Proposition 6.16 as a hypothesis.

6.7. Quasigeodesics.

In what follows we frequently identify a path in X with its image as a subset of X.

Given two point, x, y in a path α, we shall write α[x, y] for the segment of α beween x and
y.

Definition : A path, β, is a (λ, h)-quasigeodesic, with respect to constants λ ≥ 1 and
h ≥ 0, if for all x, y ∈ β, length(β[x, y]) ≤ λd(x, y) + h.

A quasigeodesic is a path that is (λ, h)-quasigeodesic for some λ and h.

In other words, it takes the shortest route to within certain linear bounds.

Note: a (1, h)-quasigeodesic is the same as an h-taut path.

Suppose that (X, d) is k-hyperbolic.

Proposition 6.17 : Suppose that α is a geodesic, and β is a (λ, h)-quasigeodesic with
the same endpoints. Then

β ⊆ N(α, r)

α ⊆ N(β, r)

where r depends only on λ, h, and the hyperbolicity constant k.

Proof : We first show that α lies a bounded distance from β.

(In other words, we proceed in the opposite order from Lemma 6.4.)

Let a, b be the endpoints of α.

Choose p ∈ α so as to maximise d(p, β) = t, say.

Let a0, a1 ∈ [a, p] be points with d(p, a0) = t and d(p, a1) = 2t.

The point a0 certainly exists, since d(p, a) ≥ t.
If d(p, a) < 2t, we set a1 = a instead.
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Now d(a1, β) ≤ t, and so there is some point a2 ∈ β with d(a1, a2) ≤ t.
If a1 = a, we set a2 = a.

We similarly define points b0, b1, b2

Note that d(a2, b2) ≤ 6t.

Let
δ = β[a2, b2],

and let
γ = [a0, a1] ∪ [a1, a2] ∪ δ ∪ [b2, b1] ∪ [b1, b0].

Note that γ ∩N0(p, t) = ∅. Since β is quasigeodesic,

length δ ≤ λd(a2, b2) + h

≤ 6λt+ h,

and so
length γ ≤ 4t+ length δ

≤ (6λ+ 4)t+ h.

On the other hand, d(a0, b0) = 2t, and γ does not meet N0(p, t).

Thus applying Corollary 6.15 (with µ = 2µ0) or Proposition 6.16, we get

length γ ≥ eµ(2t) −K.

Putting these together we get

e2µt ≤ (6λ+ 4)t+ h+K

which places an upper bound of t in terms of λ, h, µ,K, and hence in terms of λ, h and k.

To show that β lies in a bounded neighbourhood of α, one can now use a connectedness
argument similar to that use in Lemma 6.4 (with the roles of α and β interchanged). ♦

Note: (after doubling the constant r) Propositon 6.17 applies equally well to two quasi-
geodesics, α and β with the same endpoints.

Using Proposition 6.17, we see that we can formulate hyperbolicity equally well using
quasigeodesic triangles, that is where α, β, γ are assumed quasigeodesic with fixed con-
stants:

Lemma 6.18 : Any (λ, k)-quasigeodesic triangle (α, β, γ) has a t-centre, where t depends
only on λ, h and k.
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Proof : Let (α′, β′, γ′) be a geodesic triangle with the same vertices.

Applying Proposition 6.17, we see that any k-centre of (α′, β′, γ′) will be a (k + r)-centre
for (α, β, γ). ♦

6.8. Hausdorff distances.

Definition : Suppose P,Q are subsets of a metric space (X, d). We define the Hausdorff
distance between P and Q as the infimum of those r ∈ [0,∞] for which P ⊆ N(Q, r) and
Q ⊆ N(P, r).

Exercise: This is a pseudometric on the set of all bounded subsets of X.

(It is only a pseudometric, since the Hausdorff distance between a set and its closure is 0.)

Restricted to the set of closed subsets of X, this is a metric.

Note: Proposition 6.17 implies that the Hausdorff distance between two quasigeodesics with
the same endpoints is bounded in terms of the quasigeodesic and hyperbolicity constants.

6.9. Quasi-isometry invariance of hyperbolicity.

Suppose that (X, d) and (X ′, d′) are geodesic spaces and that φ : X −→ X ′ is a quasi-
isometry.

We would like to say that the image of a geodesic is a quasi-geodesic, but this is complicated
by the fact that quasi-isometries are not assumed continuous. The following technical
discussion is designed to get around that point.

Fix some h > 0.

Suppose that α is a geodesic in X from x to y. Choose points

x = x0, x1, . . . , xn = y

along α so that d(xi, xi+1) ≤ h and n ≤ l/h ≤ n+ 1.

Let yi = φ(xi) ∈ X ′.
Let ᾱ = [y0, y1] ∪ [y1, y2] ∪ · · · ∪ [yn−1, yn].

Exercise: If α is a geodesic in X and ᾱ constructed as above, then ᾱ is quasigeodesic, and
the Hausdorff distance between ᾱ and φ(α) is bounded. As usual, the statement is uniform
in the sense that the constants of the conclusion depend only on those of the hypotheses
and our choice of h.

We will continue to a proof of quasi-isometry invariance of hyperbolicity next time.

4


