Geometric group theory
Summary of Lecture 13

6.6. Exponential growth of distances.

Fix a basepoint p € X.

We write
N(p,r)={y € X | d(p,y) <},

S(p,r) ={y € X [ d(p,y) =1},
N°p,7) = N(z,7)\ S(p,7).

We will write kg = 6k (so that, by Lemma 6.5, geodesic triangles are “kg-thin” in the sense
that each side lies in a kg-neighbourhood of the union of the other two.)

Lemma 6.14 : Suppose that «, 3 are paths with the same endpoints, and with 8 geodesic.
Suppose that length(y) < 2"kq, where n € N, with n > 1. Then 8 C N(a,nky).

Proof : By induction on n.

If n =1, then length(8) < length(a) < 2k, so f C N(a, ko).

If n > 1, write & = a; U ap, where o; are subpaths of lengtg=h at most 2" 1ky. Let 3; be
a geodesic with the same endpoints as «;. Thus, 3, 51, 82 is a geodesic triangle, and so, by
Lemma 6.5, 5 C N (51 U B2, ko). By the inductive hypothesis, 5; C N(«;, (n — 1)kg), and
so 8 C N(a,nkg) as claimed. O

Corollary 6.15 : There are constants pug > 0 and K > 0, depending only on the constant
of hyperbolicity of X, with the following property. Suppose that 3 is a geodesic segment
with endpoints z,y and let p be its midpoint. Let r = d(p, x) = d(p,y). Suppose that « is
a path from x toy with d(p,«) > r. Then

length a > et" — K.

Proof : Let n= [r/ko] — 1.
If n > 1, then length(8) > 2"k, otherwise d(p, «) < nkg < r, giving a contradiction.

If n =0, then r < 2k, so e*” — K < 0, provided we chose K > e#°F so there is nothing
to prove. %

The following is a generalisation of Corollary 16.5. We leave the proof of an exercise (based
on Lemma 16.4). (It was proven by a different method in the book.)



Proposition 6.16 : There are constants pu > 0 and K > 0 such that for all r > 0, if «
is a path in X \ N%(p,r) connecting x,y € S(z,r), then

length a > er4@Y) _ K.

Proof : Exercise. &

(Note that Corollary 6.15 is a special case of Proposition 6.16, on setting u = 2p0.)

Remark : It turns out that the exponential growth of distances gives another formulation
of hyperbolicity — essentially taking the conclusion of Proposition 6.16 as a hypothesis.

6.7. Quasigeodesics.

In what follows we frequently identify a path in X with its image as a subset of X.
Given two point, z,y in a path «, we shall write o[z, y] for the segment of o beween = and
Y.

Definition : A path, 3, is a (A, h)-quasigeodesic, with respect to constants A > 1 and
h >0, if for all z,y € B, length(5[z,y]) < Ad(z,y) + h.

A quasigeodesic is a path that is (A, h)-quasigeodesic for some A\ and h.

In other words, it takes the shortest route to within certain linear bounds.
Note: a (1, h)-quasigeodesic is the same as an h-taut path.

Suppose that (X, d) is k-hyperbolic.

Proposition 6.17 : Suppose that « is a geodesic, and [3 is a (A, h)-quasigeodesic with
the same endpoints. Then
BC N(a,r)

a C N(B,r)
where r depends only on A, h, and the hyperbolicity constant k.

Proof : We first show that « lies a bounded distance from S.
(In other words, we proceed in the opposite order from Lemma 6.4.)
Let a,b be the endpoints of a.

Choose p € «a so as to maximise d(p, ) = t, say.

Let ag,ay € [a, p] be points with d(p,ag) =t and d(p,a1) = 2t.
The point ag certainly exists, since d(p,a) > t.

If d(p,a) < 2t, we set a; = a instead.



Now d(a1,) < t, and so there is some point ay € 5 with d(aq,as) < t.

If a1 = a, we set as = a.
We similarly define points bg, by, by

Note that d(az, bs) < 6t.
Let
d = Blag, ba),

and let
Y= [ao,al] U [CLl,CLQ] U 5 U [bg,bl] U [bl,bo].

Note that v N N%(p,t) = (). Since 3 is quasigeodesic,
length § < Ad(ag,bs) + h
< 6At + h,

and so
length v < 4t 4 length ¢

< (6A+4)t+ h.

On the other hand, d(ag, by) = 2t, and ~ does not meet N%(p, ).
Thus applying Corollary 6.15 (with © = 2u¢) or Proposition 6.16, we get

lengthy > e*?) — K.

Putting these together we get
e < (6A+ 4t +h+ K
which places an upper bound of ¢ in terms of A, h, u, K, and hence in terms of A, h and k.

To show that ( lies in a bounded neighbourhood of «, one can now use a connectedness
argument similar to that use in Lemma 6.4 (with the roles of o and 3 interchanged). <&

Note: (after doubling the constant r) Propositon 6.17 applies equally well to two quasi-
geodesics, a and § with the same endpoints.

Using Proposition 6.17, we see that we can formulate hyperbolicity equally well using
quasigeodesic triangles, that is where «, 3, are assumed quasigeodesic with fixed con-
stants:

Lemma 6.18 : Any (), k)-quasigeodesic triangle (o, 3,y) has a t-centre, where t depends
only on A\, h and k.



Proof : Let (¢/,5',7") be a geodesic triangle with the same vertices.

Applying Proposition 6.17, we see that any k-centre of (¢/, 5',~") will be a (k 4 r)-centre
for (e, 3,7). ¢

6.8. Hausdorff distances.

Definition : Suppose P, @ are subsets of a metric space (X, d). We define the Hausdorff
distance between P and () as the infimum of those r € [0, oo] for which P C N(Q,r) and
QC N(P,r).

Exercise: This is a pseudometric on the set of all bounded subsets of X.
(It is only a pseudometric, since the Hausdorff distance between a set and its closure is 0.)
Restricted to the set of closed subsets of X, this is a metric.

Note: Proposition 6.17 implies that the Hausdorff distance between two quasigeodesics with
the same endpoints is bounded in terms of the quasigeodesic and hyperbolicity constants.

6.9. Quasi-isometry invariance of hyperbolicity.
Suppose that (X,d) and (X', d") are geodesic spaces and that ¢ : X — X' is a quasi-

isometry.

We would like to say that the image of a geodesic is a quasi-geodesic, but this is complicated
by the fact that quasi-isometries are not assumed continuous. The following technical
discussion is designed to get around that point.

Fix some h > 0.

Suppose that « is a geodesic in X from = to y. Choose points
T=T0,T1y.--,Tn =Y

along « so that d(z;,z;11) < hand n <l/h<n+1.

Let y; = ¢(x;) € X'.

Let & = [yo,y1] U [y1,y2] U -+ U [yn—1, yn].

Exercise: If a is a geodesic in X and & constructed as above, then & is quasigeodesic, and
the Hausdorff distance between & and ¢(«) is bounded. As usual, the statement is uniform

in the sense that the constants of the conclusion depend only on those of the hypotheses
and our choice of h.

We will continue to a proof of quasi-isometry invariance of hyperbolicity next time.



