Geometric group theory
 Summary of Lecture 12

6.3. Projections.

Suppose $x, y, z \in X$ and α is a geodesic connecting x to y.
We describe a few different, but essentially equivalent ways of thinking of the notion of a "projection" of z to α.
($\mathbf{P} 1$) One way, we have already seen, is to take geodesics β, γ from z to x and y respectively, and let $a \in \alpha$ be a $2 k$-centre for the triangle (α, β, γ).
A-priori, this might depend on the choice of β and γ. Here are another two constructions.
(P2) Let $b \in \alpha$ be the unique point so that

$$
x b=\langle y, z\rangle_{x} .
$$

It follows that

$$
y b=\langle x, z\rangle_{y} .
$$

(P3) Choose some $c \in \alpha$ so as to minimise $z c$.
We want to show that these three constructions agree up to bounded distance.
First note that

$$
\begin{aligned}
& x z \leq x a+a z \leq x z+4 k \\
& y z \leq y a+a z \leq y z+4 k \\
& x y=x a+a y
\end{aligned}
$$

and so we get

$$
x a-2 k \leq\langle y, z\rangle_{x} \leq x a+2 k .
$$

It follows that $a b \leq 2 k$.
Now note that

$$
z c=d(z, \alpha)=d(z, \alpha[c, x]) .
$$

Applying Lemma 6.2 (with α replaced by $\alpha[c, x]$), we see that

$$
z c \leq\langle x, c\rangle_{z}+4 k
$$

and so

$$
2 z c \leq(z c+z x-c x)+8 k
$$

giving

$$
z c+c x \leq z x+8 k
$$

Thus $\langle x, z\rangle_{c} \leq 4 k$ and so by Lemma 6.2 again (with z replaced by c and α replaced by β) we get

$$
d(c, \beta) \leq 4 k+4 k \leq 8 k
$$

Similarly, $d(c, \gamma) \leq 8 k$.
In other words, c is an $8 k$-centre for (α, β, γ).
We can now apply the argument of the previous paragraph again.
The constants have got a bit bigger, and this time we get $b c \leq 8 k$.
This shows the above three definitions of projections agree up to bounded distance, depending only on k.

Note: There is some flexibility in the definitions.
If we took a to be any t-centre, or chose $c \in \alpha$ to be any point with $d(z, c) \leq d(z, \alpha)+t$, then we get similar bounds depending only on t and k.

One consequence of this construction is the following:
Lemma 6.6 : Suppose that $x, y, z \in X$. Then a, b are t-centres of triangles with vertices x, y, z, then $a b$ is bounded in terms of t and k.

Proof : By Corollary 6.3, a t-centre of one triangle will be a $t+4 k$ centre of any other with the same vertices.

We can therefore assume that a and b are centres of the same triangle.
We can also assume that they lie on some edge, say α, of this triangle (replacing t by $2 t$). The situation is therefore covered by the above discussion.

We also note that a centre, a, for x, y, z, is decribed up to bounded distance by saying that

$$
a x \leq\langle y, z\rangle_{x}+t, \quad a y \leq\langle z, x\rangle_{y}+t \quad \text { and } \quad a z \leq\langle x, y\rangle_{z}+t,
$$

for some constant t.
We also note:
Given $x, y, z \in X$, let a be a centre for x, y, z.
Let δ, ϵ, ζ be geodesics connecting a to x, y and z respectively.
Let τ be the "tripod" $\delta \cup \epsilon \cup \zeta$. This is a tree in X, with extreme points (valence 1 vertices) x, y, z.
Note that distances in τ agree with distances in X up to a bounded constant.
This is an instance of a much more general result about the "treelike" nature of hyperbolic spaces.

Notation. Given $x, y \in X$ we shall write $[x, y]$ for some choice of geodesic between x and y.
If $z, w \in[x, y]$, we will assume that $[z, w] \subseteq[x, y]$.
Of course this involves making a choice, but since any two such geodesics remain a bounded distance apart, in practice this will not matter much.

6.4. Trees in hyperbolic spaces.

Proposition 6.7: There is a function

$$
h: \mathbf{N} \longrightarrow[0, \infty)
$$

such that if $F \subseteq X$ with $|F|=n$, then there is a tree, τ, embedded in X, such that for all $x, y \in F$,

$$
d_{\tau}(x, y) \leq x y+k h(n)
$$

Here d_{τ} is distance measured in the tree τ.
Note that we can assume that all the edges of τ are geodesic segments.
We can also assume that every extreme (i.e. valence 1) point of τ lies in F.
In this case, τ will be $k h(n)$-taut, in the following sense:
Definition : A tree $\tau \subseteq X$ is t-taut if every arc in τ is t-taut.
We will refer to a such a tree, τ, as a "spanning tree" for F.
To prove Propostion 6.7, we will need the following lemma:
Lemma 6.8: Suppose $x, y, z \in X$. Suppose that β is a t-taut path from x to y and that y is the nearest point on β to z. Then $\beta \cup[y, z]$ is $(3 t+24 k)$-taut.

Proof : Let α be any geodesic from x to y
By Lemma $6.5(2), \alpha \subseteq N(\beta, t+8 k)$.
By hypothesis, $d(z, \beta)=y z$, and so

$$
d(z, \alpha) \geq y z-(t+8 k) .
$$

Thus, by Lemma 6.2,

$$
\begin{aligned}
\langle x, y\rangle_{z} & \geq d(z, \alpha)-4 k \\
& \geq y z-t-12 k .
\end{aligned}
$$

That is,

$$
x z+y z-x y \geq 2 y z-2 t-24 k,
$$

and so

$$
x y+y z \leq x z+2 t+24 k .
$$

It follows that

$$
\begin{aligned}
\operatorname{length}(\beta \cup[y, z]) & \leq(x y+t)+y z \\
& \leq x z+3 t+24 k
\end{aligned}
$$

Corollary 6.9 : Suppose that τ is t-taut tree and $z \in X$. Let $y \in \tau$ be a nearest point to z.
Then $\tau \cup[y, z]$ is $(3 t+24 k)$-taut.

Proof of Proposition 6.7:

Let $F=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$.
Construct τ inductively.
Set $\tau_{2}=\left[x_{1}, x_{2}\right]$, and define

$$
\tau_{i}=\tau_{i-1} \cup\left[y, x_{i}\right],
$$

where y is a nearest point to x_{i} in τ_{i-1}
We now apply Corollary 6.9 inductively, and set

$$
\tau=\tau_{n}
$$

Remark: This argument gives $h(n)$ exponential in n. In fact, one can show that the same construction gives $h(n)$ linear in n, but this is more subtle. One cannot do better than linear for an arbitrary ordering of the points of F (exercise). A different construction can be used to give a tree with $h(n)=O(\log (n))$, which is the best possible:

Exercise: Let F be a set of n equally spaced points around a circle of radius $r \geq \log (n)$ in \mathbf{H}^{2}. Then no spanning tree can be better than t-taut, where $t=O(r)=O(\log n)$. (Use the fact that the length of a circle of radius r is $2 \pi \sinh r$.)

As far as I know, the following question remains open (even for \mathbf{H}^{2}):

Question: In the construction of the tree in Proposition 6.7, can one choose the order of the points $\left(x_{i}\right)_{i}$ so as always to give a tree with $h(n)=O(\log n)$?

6.5. The four-point condition.

Let us suppose that τ is a tree containing four points $x, y, z, w \in \tau$.
One can see that, measuring distances in τ, we have

$$
x y+z w \leq \max \{x z+y w, x w+y z\} .
$$

Suppose, for example, that the arcs from x to y and from z to w meet in at most one point In this case, we write $(x y \mid z w)$, and this situation we see that

$$
x y+z w \leq x z+y w=x w+y z .
$$

Whatever the arrangement of the three points we see that at least one of $(x y \mid z w),(x z \mid y w)$ or $(x w \mid y z)$ must hold, thereby verifying the above inequality.

Lemma 6.10: Given $k \geq 0$, there is some $k^{\prime} \geq 0$ such that if X is a k-hyperbolic geodesic spaces, and $x, y, z, w \in X$, then

$$
x y+z w \leq \max \{x z+y w, x w+y z\}+k^{\prime} .
$$

Proof : By Proposition 6.7, we can find a tree τ, containing x, y, z, w, so that distances in τ agree with distances in X up to an additive constant $k h(4)$.
We can now apply the above observation.
(As usual, k^{\prime} is some particular multiple of k.)

In fact, hyperbolicity is characterised by this property.
Let us suppose, for the moment, that (X, d) is any geodesic space and $k^{\prime} \geq 0$ is some constant.

We suppose:

$$
\begin{equation*}
(\forall x, y, z, w \in X)\left(x y+z w \leq \max \{x z+y w, x w+y z\}+k^{\prime}\right) . \tag{*}
\end{equation*}
$$

Given $x, y, z \in X$ and a geodesic α from x to y, let $a \in \alpha$ be the point with $x a=\langle y, z\rangle_{x}$
Lemma 6.11 : $x a+a z \leq x z+k^{\prime}$ and $y z+a z \leq y z+k^{\prime}$.

Proof : Let $r=\langle y, z\rangle_{x}, s=\langle z, x\rangle_{y}$ and $t=\langle x, y\rangle_{z}$.
Thus,

$$
\begin{aligned}
x y & =r+s \\
y z & =s+t \\
z x & =t+r \\
x a & =r \\
y a & =s .
\end{aligned}
$$

Let

$$
z a=u .
$$

We now apply (*) to $\{x, y, z, a\}$.
The three distance sums in (*) are

$$
\begin{aligned}
& r+s+u \\
& r+s+t \\
& r+s+t
\end{aligned}
$$

and so $u \leq t+k^{\prime}$. But now

$$
\begin{aligned}
& x a+a z=r+u \leq r+t+k^{\prime}=x z+k^{\prime} \\
& y a+a z=s+u \leq s+t+k^{\prime}=y z+k^{\prime} .
\end{aligned}
$$

Lemma 6.12 : In the above situation, let β and γ be geodesics from z to x and from z to y repectively. Then a is a ($3 k^{\prime} / 2$)-centre for the triangle (α, β, γ).

Proof : Let b be the projection of a to β in the above sense.
Applying Lemma 6.11 to a and β (in place of z and α) we see that

$$
\begin{aligned}
& a b+b x \leq a x+k^{\prime} \\
& a b+b z \leq a z+k^{\prime} .
\end{aligned}
$$

Adding we get

$$
\begin{aligned}
2 a b+(x b+b z) & \leq x a+a z+2 k^{\prime} \\
2 a b+x z & \leq x a+a z+2 k^{\prime} \\
& \leq x z+3 k^{\prime}
\end{aligned}
$$

applying Lemma 6.11 again to z and α.
We see that

$$
a b \leq 3 k^{\prime} / 2 .
$$

We have shown that $d(a, \beta) \leq 3 k^{\prime} / 2$.

Similarly $d(a, \gamma) \leq 3 k^{\prime} / 2$ as required.

We have shown that under the assumption $(*)$ every triangle has a $\left(3 k^{\prime} / 2\right)$-centre. Putting this together with Lemma 6.10, we get:

Proposition 6.13 : For a geodesic metric space, the condition (*) is equivalent to hyperbolicity.

We remark that $(*)$ makes no reference to geodesics.
Remark: The "four point" condition (*) is frequently given in the following equivalent form:

$$
(\forall x, y, z, w \in X)\left(\langle x, y\rangle_{w} \geq \min \left\{\langle x, z\rangle_{w},\langle y, z\rangle_{w}\right\}-k^{\prime \prime}\right.
$$

(where $k^{\prime \prime}=k^{\prime} / 2$).
Indeed this was the first definition of hyperbolicity given in Gromov's original paper on the subject.

