
Geometric group theory
Summary of Lecture 12

6.3. Projections.

Suppose x, y, z ∈ X and α is a geodesic connecting x to y.

We describe a few different, but essentially equivalent ways of thinking of the notion of a
“projection” of z to α.

(P1) One way, we have already seen, is to take geodesics β, γ from z to x and y respectively,
and let a ∈ α be a 2k-centre for the triangle (α, β, γ).

A-priori, this might depend on the choice of β and γ. Here are another two constructions.

(P2) Let b ∈ α be the unique point so that

xb = 〈y, z〉x.

It follows that
yb = 〈x, z〉y.

(P3) Choose some c ∈ α so as to minimise zc.

We want to show that these three constructions agree up to bounded distance.

First note that
xz ≤ xa+ az ≤ xz + 4k

yz ≤ ya+ az ≤ yz + 4k

xy = xa+ ay,

and so we get
xa− 2k ≤ 〈y, z〉x ≤ xa+ 2k.

It follows that ab ≤ 2k.

Now note that
zc = d(z, α) = d(z, α[c, x]).

Applying Lemma 6.2 (with α replaced by α[c, x]), we see that

zc ≤ 〈x, c〉z + 4k,

and so
2zc ≤ (zc+ zx− cx) + 8k

giving
zc+ cx ≤ zx+ 8k.
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Thus 〈x, z〉c ≤ 4k and so by Lemma 6.2 again (with z replaced by c and α replaced by β)
we get

d(c, β) ≤ 4k + 4k ≤ 8k.

Similarly, d(c, γ) ≤ 8k.

In other words, c is an 8k-centre for (α, β, γ).

We can now apply the argument of the previous paragraph again.

The constants have got a bit bigger, and this time we get bc ≤ 8k.

This shows the above three definitions of projections agree up to bounded distance, de-
pending only on k.

Note: There is some flexibility in the definitions.

If we took a to be any t-centre, or chose c ∈ α to be any point with d(z, c) ≤ d(z, α) + t,
then we get similar bounds depending only on t and k.

One consequence of this construction is the following:

Lemma 6.6 : Suppose that x, y, z ∈ X. Then a, b are t-centres of triangles with vertices
x, y, z, then ab is bounded in terms of t and k.

Proof : By Corollary 6.3, a t-centre of one triangle will be a t + 4k centre of any other
with the same vertices.

We can therefore assume that a and b are centres of the same triangle.

We can also assume that they lie on some edge, say α, of this triangle (replacing t by 2t).

The situation is therefore covered by the above discussion. ♦

We also note that a centre, a, for x, y, z, is decribed up to bounded distance by saying that

ax ≤ 〈y, z〉x + t, ay ≤ 〈z, x〉y + t and az ≤ 〈x, y〉z + t,

for some constant t.

We also note:

Given x, y, z ∈ X, let a be a centre for x, y, z.

Let δ, ε, ζ be geodesics connecting a to x, y and z respectively.

Let τ be the “tripod” δ∪ε∪ζ. This is a tree in X, with extreme points (valence 1 vertices)
x, y, z.

Note that distances in τ agree with distances in X up to a bounded constant.

This is an instance of a much more general result about the “treelike” nature of hyperbolic
spaces.
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Notation. Given x, y ∈ X we shall write [x, y] for some choice of geodesic between x and
y.

If z, w ∈ [x, y], we will assume that [z, w] ⊆ [x, y].

Of course this involves making a choice, but since any two such geodesics remain a bounded
distance apart, in practice this will not matter much.

6.4. Trees in hyperbolic spaces.

Proposition 6.7 : There is a function

h : N −→ [0,∞)

such that if F ⊆ X with |F | = n, then there is a tree, τ , embedded in X, such that for all
x, y ∈ F ,

dτ (x, y) ≤ xy + kh(n).

Here dτ is distance measured in the tree τ .

Note that we can assume that all the edges of τ are geodesic segments.

We can also assume that every extreme (i.e. valence 1) point of τ lies in F .

In this case, τ will be kh(n)-taut, in the following sense:

Definition : A tree τ ⊆ X is t-taut if every arc in τ is t-taut.

We will refer to a such a tree, τ , as a “spanning tree” for F .

To prove Propostion 6.7, we will need the following lemma:

Lemma 6.8 : Suppose x, y, z ∈ X. Suppose that β is a t-taut path from x to y and that
y is the nearest point on β to z. Then β ∪ [y, z] is (3t+ 24k)-taut.

Proof : Let α be any geodesic from x to y

By Lemma 6.5(2), α ⊆ N(β, t+ 8k).

By hypothesis, d(z, β) = yz, and so

d(z, α) ≥ yz − (t+ 8k).

Thus, by Lemma 6.2,
〈x, y〉z ≥ d(z, α)− 4k

≥ yz − t− 12k.

That is,
xz + yz − xy ≥ 2yz − 2t− 24k,
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and so

xy + yz ≤ xz + 2t+ 24k.

It follows that

length(β ∪ [y, z]) ≤ (xy + t) + yz

≤ xz + 3t+ 24k.

♦

Corollary 6.9 : Suppose that τ is t-taut tree and z ∈ X. Let y ∈ τ be a nearest point
to z.

Then τ ∪ [y, z] is (3t+ 24k)-taut. ♦

Proof of Proposition 6.7:

Let F = {x1, x2, . . . , xn}.
Construct τ inductively.

Set τ2 = [x1, x2], and define

τi = τi−1 ∪ [y, xi],

where y is a nearest point to xi in τi−1

We now apply Corollary 6.9 inductively, and set

τ = τn.

♦

Remark: This argument gives h(n) exponential in n. In fact, one can show that the same
construction gives h(n) linear in n, but this is more subtle. One cannot do better than
linear for an arbitrary ordering of the points of F (exercise). A different construction can
be used to give a tree with h(n) = O(log(n)), which is the best possible:

Exercise: Let F be a set of n equally spaced points around a circle of radius r ≥ log(n)
in H2. Then no spanning tree can be better than t-taut, where t = O(r) = O(log n). (Use
the fact that the length of a circle of radius r is 2π sinh r.)

As far as I know, the following question remains open (even for H2):

Question: In the construction of the tree in Proposition 6.7, can one choose the order of
the points (xi)i so as always to give a tree with h(n) = O(log n)?
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6.5. The four-point condition.

Let us suppose that τ is a tree containing four points x, y, z, w ∈ τ .

One can see that, measuring distances in τ , we have

xy + zw ≤ max{xz + yw, xw + yz}.

Suppose, for example, that the arcs from x to y and from z to w meet in at most one point

In this case, we write (xy|zw), and this situation we see that

xy + zw ≤ xz + yw = xw + yz.

Whatever the arrangement of the three points we see that at least one of (xy|zw), (xz|yw)
or (xw|yz) must hold, thereby verifying the above inequality.

Lemma 6.10 : Given k ≥ 0, there is some k′ ≥ 0 such that if X is a k-hyperbolic
geodesic spaces, and x, y, z, w ∈ X, then

xy + zw ≤ max{xz + yw, xw + yz}+ k′.

Proof : By Proposition 6.7, we can find a tree τ , containing x, y, z, w, so that distances
in τ agree with distances in X up to an additive constant kh(4).

We can now apply the above observation. ♦

(As usual, k′ is some particular multiple of k.)

In fact, hyperbolicity is characterised by this property.

Let us suppose, for the moment, that (X, d) is any geodesic space and k′ ≥ 0 is some
constant.

We suppose:

(∗) (∀x, y, z, w ∈ X)(xy + zw ≤ max{xz + yw, xw + yz}+ k′).

Given x, y, z ∈ X and a geodesic α from x to y, let a ∈ α be the point with xa = 〈y, z〉x

Lemma 6.11 : xa+ az ≤ xz + k′ and yz + az ≤ yz + k′.
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Proof : Let r = 〈y, z〉x, s = 〈z, x〉y and t = 〈x, y〉z.
Thus,

xy = r + s

yz = s+ t

zx = t+ r

xa = r

ya = s.

Let
za = u.

We now apply (∗) to {x, y, z, a}.
The three distance sums in (∗) are

r + s+ u

r + s+ t

r + s+ t,

and so u ≤ t+ k′. But now

xa+ az = r + u ≤ r + t+ k′ = xz + k′

ya+ az = s+ u ≤ s+ t+ k′ = yz + k′.

♦

Lemma 6.12 : In the above situation, let β and γ be geodesics from z to x and from z
to y repectively. Then a is a (3k′/2)-centre for the triangle (α, β, γ).

Proof : Let b be the projection of a to β in the above sense.

Applying Lemma 6.11 to a and β (in place of z and α) we see that

ab+ bx ≤ ax+ k′

ab+ bz ≤ az + k′.

Adding we get
2ab+ (xb+ bz) ≤ xa+ az + 2k′

2ab+ xz ≤ xa+ az + 2k′

≤ xz + 3k′

applying Lemma 6.11 again to z and α.

We see that
ab ≤ 3k′/2.

We have shown that d(a, β) ≤ 3k′/2.

6



Similarly d(a, γ) ≤ 3k′/2 as required. ♦

We have shown that under the assumption (∗) every triangle has a (3k′/2)-centre.

Putting this together with Lemma 6.10, we get:

Proposition 6.13 : For a geodesic metric space, the condition (∗) is equivalent to
hyperbolicity. ♦

We remark that (∗) makes no reference to geodesics.

Remark: The “four point” condition (∗) is frequently given in the following equivalent
form:

(∀x, y, z, w ∈ X)(〈x, y〉w ≥ min{〈x, z〉w, 〈y, z〉w} − k′′

(where k′′ = k′/2).

Indeed this was the first definition of hyperbolicity given in Gromov’s original paper on
the subject.
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