Geometric group theory
 Summary of Lecture 10

5.3. Tessellations of \mathbf{H}^{2}.

Suppose that $n \in \mathbf{N}, n \geq 3$.
The regular euclidean n-gon has all angles equal to $\left(1-\frac{2}{n}\right) \pi$.
If $0<\theta<\left(1-\frac{2}{n}\right) \pi$, then one can construct a regular hyperbolic n-gon with all angles equal to θ.
(Use a continuity argument.)
Now if θ has the form $2 \pi / m$ for some $m \in \mathbf{N} n \geq 3$, we get a regular tessellation of the hyperbolic plane by repeatedly reflecting the polygon in its edges.
(For a more formal argument, use "Poincaré's Theorem".)
Note that the condition

$$
\frac{2 \pi}{m}<\left(1-\frac{2}{n}\right) \pi
$$

reduces to

$$
\frac{1}{m}+\frac{1}{n}<\frac{1}{2}
$$

Thus we get:
Proposition 5.2: If $m, n \in \mathbf{N}$ with $\frac{1}{m}+\frac{1}{n}<\frac{1}{2}$, then there is a regular tessellation of the hyperbolic plane by regular n-gons so that m such n-gons meet at every vertex.

Remark: in the euclidean situation, the corresponding condition is

$$
\frac{1}{m}+\frac{1}{n}=\frac{1}{2}
$$

In this case, we just get the three familiar tilings where

$$
(m, n)=(3,6),(4,4),(6,3)
$$

In the case of spherical geometry, we get

$$
\frac{1}{m}+\frac{1}{n}>\frac{1}{2}
$$

This gives the five Platonic solids:

$$
(m, n)=(3,3),(3,4),(4,3),(3,5),(5,3) .
$$

5.4. Surfaces.

For simplicity, we consider here only closed orientable surfaces. These are classified by their "genus", which is a non-negative integer.

Genus 0:

The sphere clearly has "spherical geometry" - as the unit sphere in \mathbf{R}^{3}.

Genus 1:

We can think of the torus topologically as obtained by gluing together the opposite edges of the unit square, $[0,1]^{2}$.
Note that at the vertex we get a total angle of $4(\pi / 2)=2 \pi$, so there is no singularity there.
We get a metric on the torus which is locally euclidean (i.e. every point has a neighbourhood isometric to an open subset of the euclidean plane).
Such a metric is often referred to simply as a "euclidean structure".
The universal cover is the euclidean plane, \mathbf{R}^{2}, with the fundamental group acting by translations.

Note that the edges of the square project to loops representing generators, a, b of $\pi_{1}(T)$. Reading around the boundary of the square we see that $[a, b]=a b a^{-1} b^{-1}=1$.
The 1-skeleton of the square tessellation of the plane can be identified with the Cayley graph of $\pi_{1}(T)$ with respect to these generators.

Genus 2:

Let S be the closed surface of genus 2 .
We can construct S by taking a (regular) octagon and gluing together its edges according to the cyclic labelling

$$
A B A^{-1} B^{-1} C D C^{-1} D^{-1}
$$

If we try the above constuction with a euclidean octagon we would end up with an angle of $8(3 \pi / 4)=6 \pi>2 \pi$ at the vertex, so our euclidean structure would be singular.
Instead the regular hyperbolic octagon all of whose angles are $\pi / 4$.
In this way we get a metric on S that is locally hyperbolic, generally termed a hyperbolic structure in S.
The universal cover is \mathbf{H}^{2} and our octagon lifts to a tessellation of the type $(m, n)=(8,8)$ described above.
The edges of the octagon project to loops a, b, c, d, and reading around the boundary, we see that

$$
[a, b][c, d]=a b a^{-1} b^{-1} c d c^{-1} d^{-1}=1
$$

In fact, it turns out that

$$
\langle a, b, c, d \mid[a, b][c, d]=1\rangle
$$

is a presentation for $\pi_{1}(S)$.
Its Cayley graph can be identified with the 1-skeleton of our $(8,8)$ tessellation of \mathbf{H}^{2}.
We see that

$$
\pi_{1}(S) \sim \mathbf{H}^{2}
$$

Genus $g \geq 2$:
If S is a closed surface of genus, $g \geq 2$, we get a similar picture taking a regular $4 g$-gon with cone angles $\pi / 2 g$
We get

$$
\begin{gathered}
\pi_{1}(S) \cong \\
\left\langle a_{1}, b_{1}, a_{2}, b_{2}, \ldots, a_{g}, b_{g} \mid\left[a_{1}, b_{1}\right]\left[a_{2}, b_{2}\right] \cdots\left[a_{g}, b_{g}\right]=1\right\rangle .
\end{gathered}
$$

The Cayley graph is the 1-skeleton of a $(4 g, 4 g)$ tesselation of \mathbf{H}^{2}.
In summary we see:
Proposition 5.3: If S is a closed surface of genus at least 2, then $\pi_{1}(S) \sim \mathbf{H}^{2}$.

Remark: In fact, there is a whole "Teichmüller space" of hyperbolic structures on a given surface of genus $g \geq 2$.

Proposition 5.4 : If S and S^{\prime} are closed orientable surfaces of genus at least 2, then $\pi_{1}(S) \approx \pi_{1}\left(S^{\prime}\right)$.

Proof : (cf. Theorem 4.2 for free groups.)
Imagine embedding the graph K_{n} in \mathbf{R}^{3}, and thickenning it up to a 3-dimensional object (called a "handlebody") whose boundary is a surface of genus $n+1$.

Now we do essentially the same construction, to see that a surface of genus $p \geq 2$ and a surface of genus $q \geq 2$ are both covered by a surface of genus $p q-p-q+2$.

Theorem 5.5 : Suppose S and S^{\prime} are closed orientable sufaces. If $\pi_{1}(S) \sim \pi_{1}\left(S^{\prime}\right)$ then $\pi_{1}(S) \approx \pi_{1}\left(S^{\prime}\right)$.

For this we need that the euclidean plane is not quasi-isometric to the hyperbolic plane this will be discussed later.

Then there are exactly three quasi-isometry classes - one each for the sphere, the torus, and all higher genus surfaces.

The result then follows by Propostion 5.4.
Fundamental groups of closed surface, other than the 2-sphere, are generally just referred to as surface groups.
(Any non-orientable surface is double covered by an orientable surface, and so non-orientable surfaces can easily be brought into the above discussion.)

Fact: Any f.g. group quasi-isometric to a surface group is a virtual surface group.

The case of the torus was already discussed in Section 3. The hyperbolic case (genus at least 2) is a difficult result of Tukia, Gabai and Casson and Jungreis.

In fact any group quasi-isometric to a complete riemannian plane is a virtual surface group. This was shown by Mess (modulo the completion of the above theorem which came later).

5.5. 3-dimensional hyperbolic geometry.

Our construction of the Poincaré model makes sense in any dimension n.
We take the disc

$$
D^{n}=\left\{\underline{x} \in \mathbf{R}^{n} \mid\|\underline{x}\|<1\right\} .
$$

We scale the metric by the same factor

$$
\lambda(\underline{x})=\frac{2}{1-\|\underline{x}\|^{2}} .
$$

We get a complete geodesic metric, ρ, and the isometry class of (D, ρ) is referred to as "hyperbolic n-space", \mathbf{H}^{n}.
It is homogeneous and isotropic.
Its ideal boundary, ∂D, is an $(n-1)$-sphere.
Bi-infinite geodesics are arcs of euclidean circles (or diameters) orthogonal to ∂D.
More generally any euclidean sphere of any dimension, meeting ∂D othogonally intersects D in a hyperbolic subspace isometric to \mathbf{H}^{m} for some $m<n$ - there is an isometry of (D, ρ) that maps it to a euclidean subspace through the origin, thereby giving us a lower dimensional Poincaré model.

In some sense "most" hyperbolic 3-manifolds admit a hyperbolic structure. The "SeifertWeber space" is a concrete example made out of a dodecahedron.

A few facts relevant to group theory:
Let M be a closed hyperbolic 3-manifold, and $\Gamma=\pi_{1}(M)$.
Then Γ is finitely generated (in fact, finitely presented), and $\Gamma \sim \mathbf{H}^{3}$.
Thus any two such groups are q.i.
In contrast to the 2-dimenional case, the hyperbolic structure on a closed 3-manifold is unique, and it follows that covers are forced to respect hyperbolic metrics.

There are examples of closed hyperbolic 3-manifolds which do not have any common finite cover.
Idea a hyperbolic 3-manifold has associated to it "stable trace field", a finite extention of the rationals, which one can compute.
If these are different, then the groups are incommensurable.

