
Geometric group theory
Summary of Lecture 10

5.3. Tessellations of H2.

Suppose that n ∈ N, n ≥ 3.

The regular euclidean n-gon has all angles equal to (1− 2
n )π.

If 0 < θ < (1 − 2
n )π, then one can construct a regular hyperbolic n-gon with all angles

equal to θ.

(Use a continuity argument.)

Now if θ has the form 2π/m for some m ∈ N n ≥ 3, we get a regular tessellation of the
hyperbolic plane by repeatedly reflecting the polygon in its edges.

(For a more formal argument, use “Poincaré’s Theorem”.)

Note that the condition
2π

m
< (1− 2

n
)π

reduces to
1

m
+

1

n
<

1

2
.

Thus we get:

Proposition 5.2 : If m,n ∈ N with 1
m + 1

n < 1
2 , then there is a regular tessellation of

the hyperbolic plane by regular n-gons so that m such n-gons meet at every vertex. ♦

Remark: in the euclidean situation, the corresponding condition is

1

m
+

1

n
=

1

2
.

In this case, we just get the three familiar tilings where

(m,n) = (3, 6), (4, 4), (6, 3).

In the case of spherical geometry, we get

1

m
+

1

n
>

1

2
.

This gives the five Platonic solids:

(m,n) = (3, 3), (3, 4), (4, 3), (3, 5), (5, 3).
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5.4. Surfaces.

For simplicity, we consider here only closed orientable surfaces. These are classified by
their “genus”, which is a non-negative integer.

Genus 0:

The sphere clearly has “spherical geometry” — as the unit sphere in R3.

Genus 1:

We can think of the torus topologically as obtained by gluing together the opposite edges
of the unit square, [0, 1]2.

Note that at the vertex we get a total angle of 4(π/2) = 2π, so there is no singularity
there.

We get a metric on the torus which is locally euclidean (i.e. every point has a neighbourhood
isometric to an open subset of the euclidean plane).

Such a metric is often referred to simply as a “euclidean structure”.

The universal cover is the euclidean plane, R2, with the fundamental group acting by
translations.

Note that the edges of the square project to loops representing generators, a, b of π1(T ).

Reading around the boundary of the square we see that [a, b] = aba−1b−1 = 1.

The 1-skeleton of the square tessellation of the plane can be identified with the Cayley
graph of π1(T ) with respect to these generators.

Genus 2:

Let S be the closed surface of genus 2.

We can construct S by taking a (regular) octagon and gluing together its edges according
to the cyclic labelling

ABA−1B−1CDC−1D−1.

If we try the above constuction with a euclidean octagon we would end up with an angle
of 8(3π/4) = 6π > 2π at the vertex, so our euclidean structure would be singular.

Instead the regular hyperbolic octagon all of whose angles are π/4.

In this way we get a metric on S that is locally hyperbolic, generally termed a hyperbolic
structure in S.

The universal cover is H2 and our octagon lifts to a tessellation of the type (m,n) = (8, 8)
described above.

The edges of the octagon project to loops a, b, c, d, and reading around the boundary, we
see that

[a, b][c, d] = aba−1b−1cdc−1d−1 = 1

In fact, it turns out that
〈a, b, c, d | [a, b][c, d] = 1〉
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is a presentation for π1(S).

Its Cayley graph can be identified with the 1-skeleton of our (8, 8) tessellation of H2.

We see that
π1(S) ∼ H2.

Genus g ≥ 2 :

If S is a closed surface of genus, g ≥ 2, we get a similar picture taking a regular 4g-gon
with cone angles π/2g

We get
π1(S) ∼=

〈a1, b1, a2, b2, . . . , ag, bg | [a1, b1][a2, b2] · · · [ag, bg] = 1〉.

The Cayley graph is the 1-skeleton of a (4g, 4g) tesselation of H2.

In summary we see:

Proposition 5.3 : If S is a closed surface of genus at least 2, then π1(S) ∼ H2. ♦

Remark: In fact, there is a whole “Teichmüller space” of hyperbolic structures on a given
surface of genus g ≥ 2.

Proposition 5.4 : If S and S′ are closed orientable surfaces of genus at least 2, then
π1(S) ≈ π1(S′).

Proof : (cf. Theorem 4.2 for free groups.)

Imagine embedding the graph Kn in R3, and thickenning it up to a 3-dimensional object
(called a “handlebody”) whose boundary is a surface of genus n+ 1.

Now we do essentially the same construction, to see that a surface of genus p ≥ 2 and a
surface of genus q ≥ 2 are both covered by a surface of genus pq − p− q + 2.

Theorem 5.5 : Suppose S and S′ are closed orientable sufaces. If π1(S) ∼ π1(S′) then
π1(S) ≈ π1(S′).

For this we need that the euclidean plane is not quasi-isometric to the hyperbolic plane —
this will be discussed later.

Then there are exactly three quasi-isometry classes — one each for the sphere, the torus,
and all higher genus surfaces.

The result then follows by Propostion 5.4.

Fundamental groups of closed surface, other than the 2-sphere, are generally just referred
to as surface groups.

(Any non-orientable surface is double covered by an orientable surface, and so non-orientable
surfaces can easily be brought into the above discussion.)
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Fact: Any f.g. group quasi-isometric to a surface group is a virtual surface group.

The case of the torus was already discussed in Section 3. The hyperbolic case (genus at
least 2) is a difficult result of Tukia, Gabai and Casson and Jungreis.

In fact any group quasi-isometric to a complete riemannian plane is a virtual surface group.
This was shown by Mess (modulo the completion of the above theorem which came later).

5.5. 3-dimensional hyperbolic geometry.

Our construction of the Poincaré model makes sense in any dimension n.

We take the disc
Dn = {x ∈ Rn | ||x|| < 1}.

We scale the metric by the same factor

λ(x) =
2

1− ||x||2
.

We get a complete geodesic metric, ρ, and the isometry class of (D, ρ) is referred to as
“hyperbolic n-space”, Hn.

It is homogeneous and isotropic.

Its ideal boundary, ∂D, is an (n− 1)-sphere.

Bi-infinite geodesics are arcs of euclidean circles (or diameters) orthogonal to ∂D.

More generally any euclidean sphere of any dimension, meeting ∂D othogonally intersects
D in a hyperbolic subspace isometric to Hm for some m < n — there is an isometry of
(D, ρ) that maps it to a euclidean subspace through the origin, thereby giving us a lower
dimensional Poincaré model.

In some sense “most” hyperbolic 3-manifolds admit a hyperbolic structure. The “Seifert-
Weber space” is a concrete example made out of a dodecahedron.

A few facts relevant to group theory:

Let M be a closed hyperbolic 3-manifold, and Γ = π1(M).

Then Γ is finitely generated (in fact, finitely presented), and Γ ∼ H3.

Thus any two such groups are q.i.

In contrast to the 2-dimenional case, the hyperbolic structure on a closed 3-manifold is
unique, and it follows that covers are forced to respect hyperbolic metrics.

There are examples of closed hyperbolic 3-manifolds which do not have any common finite
cover.

Idea a hyperbolic 3-manifold has associated to it “stable trace field”, a finite extention of
the rationals, which one can compute.

If these are different, then the groups are incommensurable.
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