
Geometric group theory
Summary of Lecture 9

We can also apply these kinds of arguments to commensurability.

Theorem 4.2 : If p, q ≥ 2, then Fp ≈ Fq.

Proof : Let Kn be the graph obtained by taking the circle, R/nZ, and attaching a loop
at each point of Z/nZ — that is n additional circles

We can collapse down a maximal subtree of Kn to give us a wedge of n+ 1 circles.

Thus π1(Kn) = Fn+1.

We also note that for any m ∈ N, Kmn is a cover of Kn.

Now given p, q ≥ 2, set

r = pq − p− q + 2

= (p− 1)(q − 1) + 1,

and note that Kr−1 covers both Kp−1 and Kq−1.

Since these are all compact, we see that Fr is a finite index subgroup of both Fp and Fq.
♦

Thus two f.g. free groups are q.i. if and only if they are commensurable.

There are three classes:

F0 = {1}

F1 = Z

Fn for n ≥ 2.

Exercises :

(1) If K is a finite connected graph, then π1(K) ∼= Fn, where n = |E(K)| − |V (K)|+ 1.

(2) Suppose that m,n ∈ N and n ≥ 2. Then there is some subgroup of Fn isomorphic to
Fm.

(3) (More challenging) Suppose that G/Fn is a finitely generated normal subgroup. Then
either G is trivial, or G is finite index in Fn.
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Remark : A theorem of Howson from 1954 says that if G,H ≤ Fn are finitely generated,
then G ∩H is finitely generated.

(One can give a geometric proof of this. In fact, there is related, but slightly different
statement for hyperbolic groups, which we might discuss.)

Around 1957, Hanna Neumman gave some more quantitive versions of this, and conjectured
that in fact:

(rank(G ∩H)− 1) ≤ (rank(G)− 1)(rank(H)− 1).

(Recall that the “rank” of Fm is defined to be m.)

This was proven recently by Igor Mineyev. His proof was simplified by Warren Dicks, and
it is now possible give a fairly short and elegant proof of the Hanna Neumann conjecture.

5. Hyperbolic geometry.

5.1. The hyperbolic plane.

We describe the “Poincaré model” for the hyperbolic plane.

Let D = {z ∈ C | |z| < 1}.
Suppose α : I −→ D is a smooth path.

We write α′(t) ∈ C for the complex derivative at t.

Thus, |α′(t)| is the “speed” at time t.

The euclidean length of α is lE(α) =
∫
I
|α′(t)|dt.

(This is equal to the “rectifiable” length as defined in Section 3.)

We now modify this by the introduction a scaling factor, λ : D −→ (0,∞).

We set
λ(z) = 2/(1− |z|2).

The hyperbolic length of α is thus given by

lH(α) =

∫
I

λ(α(t))|α′(t)|dt.

Note that as z approaches ∂D in the euclidean sense, then λ(z)→∞. Indeed, since∫ 1

0

2

1− x2
dx =∞,

one needs to travel an infinite hyperbolic distance to approach ∂D.

For this reason, ∂D is often referred to as the ideal boundary — we never actually get
there.
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Given x, y ∈ D, write
ρ(x, y) = inf{lH(α)}

as α varies over all smooth paths from x to y.

In fact, the minimum is attained — there is always a smooth geodesic from x to y.

One can verify that that ρ is a metric on D, inducing the usual topology. Moreover, this
metric is complete.

Definition : A Möbius transformation. is a map

f : C ∪ {∞} −→ C ∪ {∞}

of the form

f(z) =
az + b

cz + d

for constants a, b, c, d ∈ C with ad− bc 6= 0.

(We set f(∞) = a/c and f(−c/d) =∞)

It is usual to normalise so that ad− bc = 1.

The set of such transformations forms a group under composition. Note that a Möbius
tranformation is conformal, i.e. it preserves angles.

Exercises

(1) A Möbius transformation sends euclidean circles to euclidean circles, where we allow a
straight line union ∞ to be a “circle”.

(Warning: it need not preserve centres of circles.)

(2) If d = ā and c = b̄ (the complex conjugates) and |a|2 − |b|2 > 0 then f(D) = D.

(We shall normalise so that |a|2 − |b|2 = 1.) In fact, any Möbius tranformation preserving
D must have this form.

(3) Such an f (as in (2)) is an isometry of (D, ρ).

For this, one needs to check that if α is a smooth path, then lH(f ◦ α) = lH(α).

This follows from the formula,

λ(f(z))|f ′(z)| = λ(z),

which can be verified by direct calculation.

It is this fact that justifies the form of the expression for λ(z) (though it does not explain
why we chose the factor of 2). One can check that λ must have this form in order that the
above formula should hold.
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(4) If z, w ∈ D, then there is some such f sending z to w. (Without loss of generality,
w = 0.)

(5) If p, q, r ∈ ∂D are distinct, and p′, q′, r′ ∈ ∂D are distinct, and the orientation of p, q, r
is the same as that of p′, q′, r′, then there is some such f with f(p) = p′, f(q) = q′ and
f(r) = r′.

(In fact, to verify this, it is simples to prove a similar statement where p, q, r and p′, q′, r′

are allowed to be any two triples of distinct points of C ∪ {∞}.)

Putting together (3) and (4), we see that (D, ρ) is homogeneous that is, there is an isometry
taking any point to any other point.

By symmetry it is easily seen that any euclidean diameter of D, (for example, the interval
(−1, 1)) is a bi-infinite geodesic with respect to the metric ρ.

Indeed it is the unique geodesic between any pair of points on it.

Under isometries of the above type it is mapped onto arcs of euclidean circles othogonal
to ∂D.

Since any pair of points of D lie on such a circle, we see that all geodesics must be of this
type, and so we conclude:

Proposition 5.1 : Bi-infinite geodesics in the Poincaré disc are arcs of euclidean circles
othogonal to the ∂D (including diameters of the disc). ♦

Remark: all orientation preserving isometries of (D, ρ) are Möbius transformations of the
above type.

The isometry type of space we have just constructed is generally referred to as the hyperbolic
plane, and denoted H2.

The above description is called the Poincaré model

5.2. Some properties of the hyperbolic plane.

(1) In general angles in hyperbolic geometry are “smaller” than in the corresponding
situation in Euclidean geometry.

If T is a triangle with angles p, q, r, then p+ q + r < π.

In fact, one can show that the area of T is π − (p+ q + r).

One can allow for one or more of the vertices to lie in the ideal boundary, ∂D, in which
case the corresponding angle is deemed to be 0.

An ideal triangle is one where all three vertices are ideal.

Its area is π.
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(Note that a similar formula holds for a triangle in spherical geometry, where the area is
given by p+ q+ r− π. The difference is explained by the fact that spherical geometry has
“curvature” +1, whereas the hyperbolic plane has “curvature” −1. In fact, we chose the
factor 2 in the expression for λ in order for this to be the case.)

(2) Triangles are “thin”.

In particular, there is some fixed constant k > 0, so that if T is any triangle there is some
point, x ∈ H2, whose distance from all three sides is at most k. In fact, one can take
k = 1

2 log 3 (the worst case of the centre of an ideal triangle).

(3) A (round) circle of radius r in H2 has length

2π sinh r.

A round disc B(r), of radius r has area

2π(cosh r − 1).

We note in particular, that

area(B(r)) ≤ length(∂B(r)).

In fact, if B is any topological disc in H2, one can show with a little bit of work that

area(B) ≤ length(∂B).

Inequalities of this sort are called “isoperimetric inequalities”.

Note that the euclidean plane satisfies a quadratic isoperimetric inequality rather than a
linear one.
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