# Chapter 18 Cost-Effectiveness Analysis (CEA)

Cost-Effective Analysis (CEA) is a widely used alternative to CBA, especially health and defense policy. CEA compares (mutually exclusive) alternatives in terms of the ratio of their costs and a single quantified, but not monetized, effectiveness measure.

Three common constraints to doing CBA

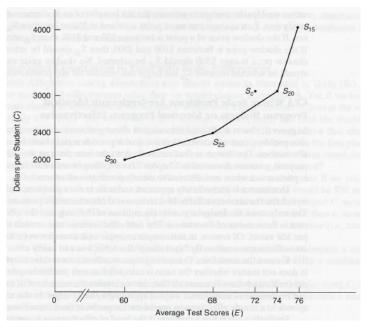
- > If CBA is not possible, CEA may give useful information concerning the relative efficiency of alternatives.
- 1. Unwilling or unable to monetize the most important policy impact.
- 2. A particular effectiveness measure does not capture all of the social benefits of each alternative, and some of these other social benefits are difficult to monetize.
- 3. Dealing with intermediate goods whose linkage to preferences is not clear.

#### **Cost-Effectiveness Ratios**

Costs (C) are measured in monetary terms.

**Effectiveness** (**E**) may be measured in units such as lives saved, tons of carbon dioxide reduction, children vaccinated.

Two ways: *Cost-Effectiveness ratio* (CE ratio) more commonly used. *Effectiveness-Cost ratio* (EC ratio)


Incremental CE ratio: Alternatives policy *i* and policy *j i*:policy implementation(with), *j*:status quo(without)

$$CE_{ij} = \frac{C}{E} = \frac{C_i - C_j}{E_i - E_j}$$

### **Application of Cost-Effectiveness Ratio**

#### Student achievement Scores

|               | C (dollars<br>per student) | E (average<br>test score) | C/E<br>(relative<br>to no<br>schooling) | S <sub>j</sub> (basis<br>for<br>comparison) | ΔC<br>(relative<br>to S <sub>j</sub> ) | ΔΕ<br>(relative<br>to S <sub>j</sub> ) | ΔC/ΔE (incremental cost-effectiveness ratio) |
|---------------|----------------------------|---------------------------|-----------------------------------------|---------------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------------|
| $S_{30}$      | 2000                       | 60                        | 33.3                                    | CHAROT                                      | CAST PPS                               | Marin                                  | DEFE TO POO                                  |
| $S_{25}$      | 2400                       | 68                        | 35.3                                    | $S_{30}$                                    | 400                                    | 8                                      | 50                                           |
| $S_{20}^{20}$ | 3000                       | 74                        | 40.5                                    | $S_{25}$                                    | 600                                    | 6                                      | 100                                          |
| $S_{15}^{20}$ | 4000                       | 76                        | 52.6                                    | $S_{20}$                                    | 1000                                   | 2                                      | 500                                          |
| $S_c$         | 3000                       | 72                        | 41.7                                    | $S_{30}$                                    | 1000                                   | 12                                     | 83.3                                         |



Frontier: best possible outcome southeast as possible

 $S_c$ : Extended (weak) dominance

...to eliminate from considered alternatives.

located at northwest of the frontier

If assigning a shadow price to average test score, how about NPV?

## **Cost-Effectiveness Analysis in Same Scale**

|                                                             | Alternatives |          |                        |
|-------------------------------------------------------------|--------------|----------|------------------------|
| Cost and Effectiveness                                      | A            | В        | C                      |
| Cost measure (budget cost)<br>Effectiveness measure (number | \$10M        | \$10M    | \$10M                  |
| of lives saved)                                             | 5            | 10       | 15                     |
| CE ratio (cost per life saved)                              | \$2.0M       | \$1.0M   | \$0.67Ma               |
| EC ratio (lives saved per million dollars)                  | 0.5 life     | 1.0 life | 1.5 lives <sup>a</sup> |

<sup>&</sup>lt;sup>a</sup> CE ratio or EC ratio of the most cost-effective alternative.

Fixed cost: Maximize effectiveness (lives saved)

Fixed effectiveness: Minimize cost (dollars)

#### **Imposing Constraints to deal with Scale Differences**

|                                                                              | Alternatives           |                  |  |
|------------------------------------------------------------------------------|------------------------|------------------|--|
| Cost and Effectiveness                                                       | A                      | В                |  |
| Cost measure (budget cost)                                                   | \$1M                   | \$100M           |  |
| Effectiveness measure (number of lives saved) CE ratio (cost per life saved) | 4<br>\$250,000°a       | 200<br>\$500,000 |  |
| EC ratio (lives saved per million dollars)                                   | 4.0 lives <sup>a</sup> | 2.0 lives        |  |

E ratio or EC ratio of the most cost-effective alternative.

| $Min C_i$                    | $Min\ CE_i$                 | $Max E_i$                    | $Min\ CE_i$                  |
|------------------------------|-----------------------------|------------------------------|------------------------------|
| $s.t. E_i \geq \overline{E}$ | s.t. $E_i \ge \overline{E}$ | s.t. $C_i \leq \overline{C}$ | $s.t. C_i \leq \overline{C}$ |

 $\overline{E}$ : Minimum acceptable level of effectiveness

 $\overline{C}$ : Maximum acceptable level of cost

#### **Illustration of the Different CE Rules**

|              |                       |                             |                                                                    | <i>E</i> ≥ 50                                                          |                                                                     | <i>C</i> ≤ 250                                                           |                                                                       |
|--------------|-----------------------|-----------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------|
| Projects (1) | Lives<br>Saved<br>(2) | Budget<br>Cost (\$M)<br>(3) | CE Ratio<br>(cost per<br>life saved)<br>(\$M/life<br>saved)<br>(4) | Budget Cost<br>of Projects<br>That Save<br>at Least<br>50 Lives<br>(5) | CE Ratio<br>of Projects<br>That Save<br>at Least<br>50 Lives<br>(6) | Lives Saved<br>of Projects<br>That Cost<br>No More<br>than \$250M<br>(7) | CE Ratio<br>of Projects<br>That Cost<br>No More<br>than \$250M<br>(8) |
| A            | 100                   | 250                         | 2.5                                                                | 250                                                                    | 2.5a                                                                | 100 <sup>a</sup>                                                         | 2.5                                                                   |
| В            | 20                    | 44                          | 2.2                                                                |                                                                        |                                                                     | 20                                                                       | 2.2                                                                   |
| C            | 100                   | 300                         | 3.0                                                                | 300                                                                    | 3.0                                                                 |                                                                          | _                                                                     |
| D            | 50                    | 300                         | 6.0                                                                | 300                                                                    | 6.0                                                                 |                                                                          | Maria -                                                               |
| E            | 10                    | 20                          | $2.0^{a}$                                                          | white I is the                                                         |                                                                     | 10                                                                       | 2.0a                                                                  |
| F            | 100                   | 900                         | 9.0                                                                | 900                                                                    | 9.0                                                                 | - TE 1                                                                   | -                                                                     |
| G            | 60                    | 210                         | 3.5                                                                | 210                                                                    | 3.5                                                                 | 60                                                                       | 3.5                                                                   |
| Н            | 50                    | 200                         | 4.0                                                                | 200 <sup>a</sup>                                                       | 4.0                                                                 | 50                                                                       | 4.0                                                                   |
| I            | 40                    | 100                         | 2.5                                                                | ANT LISTON                                                             |                                                                     | 40                                                                       | 2.5                                                                   |
| J            | 45                    | 110                         | 2.4                                                                | ny jos <del>t</del> jio 1                                              | bn <del>ov</del> ed (                                               | 45                                                                       | 2.4                                                                   |

<sup>&</sup>lt;sup>a</sup> CE ratio, budget cost, or effectiveness of the most preferred alternative

#### Chapter 20 How Accurate is CBA?

#### **Sources of Error in CBA Studies**

- 1. Omission Errors: to exclude some impact category completely. by "uncertainty of the fundamental scientific relationship"
- 2. <u>Forecasting Errors</u>: to arise due to the difficulty of predicting technological change, cognitive biases, changing project specifications, etc. by "uncertainty" and "Over optimism: underweight low-probability *bad* events and overweight low-probability *good* events".
- 3. <u>Valuation Errors</u>: Difficulty of accurate monetary estimates of the social value.
- 4. <u>Estimation/ Measurement Errors</u>: Impact are often observed, recorded or interpreted inaccurately.

# **Choosing among Projects (in Chapter 2)**

Net Present Value 
$$NPV = \sum_{t=0}^{t=n} \frac{B_t - C_t}{(1+i)^t} = \sum_{t=0}^{t=n} \frac{B_t}{(1+i)^t} - \sum_{t=0}^{t=n} \frac{C_t}{(1+i)^t} = PVB - PVC$$

Cost Benefit Ratio 
$$CBR = \sum_{t=0}^{t=n} \frac{B_t}{(1+i)^t} / \sum_{t=0}^{t=n} \frac{C_t}{(1+i)^t} = PVB / PVC$$

|                  | Costs<br>(millions<br>of dollars) | Benefits<br>(millions<br>of dollars) | Net Benefits<br>(millions<br>of dollars) | Benefits/Costs |
|------------------|-----------------------------------|--------------------------------------|------------------------------------------|----------------|
| No project       | 0                                 | 0                                    | 0                                        | _              |
| Project A        | 1                                 | 10                                   | 9                                        | 10             |
| Project B        | 10                                | 30                                   | 20                                       | 3              |
| Project C        | 4                                 | 8                                    | 4                                        | 2              |
| Project D        | 3                                 | 5                                    | 2                                        | 1.7            |
| Projects C and D | 7                                 | 21                                   | 14                                       | 3              |
| Project E        | 10                                | 8                                    | -2                                       | 0.8            |

<sup>(1)</sup> No constraints: Choose A, B, and combination C and D (net benefits equal \$43 million).

<sup>(2)</sup> All projects mutually exclusive: Choose B (net benefits equal \$20 million).

<sup>(3)</sup> Total costs cannot exceed \$10 million: Choose A and combination C and D (net benefits equal \$23 million).