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filter : extract a prescribed quantity of interest

from noisy data

stationary

all the pertinent statistics are known

linear

least squares solution: Wiener filter
Wiener, 1949

Kolmogorov, 1941

non stationary environment adaptive filtering 

self-designing system

Adaptive Filters

usual assumption:
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•linear

•non linear

•open loop

•closed loop

•supervised

•unsupervised

statistics analyzed are used in a separate

extraction module

filter parameters are updated

using extracted information

training sequence available

Classification of AF
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•FIR

•IIR

cost function

•LMS : least mean squares

•modulus

•threshold

Further Classification
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Applications

   Hybrid HybridADF ADF

carrier systems

echo canceller

talker echo

switching
center

local
center

listener echo
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Applications (cont’d)

howling canceller

ADF

amplifier
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Applications (cont’d)

channel equalizer

ADF
Unknown

Channel

𝑧−𝐿

+
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programmable
filter

adaptive
algorithm

+
-

general schematic

filter input
x(n)

y(n)
conditioning

input
Parameter update error output

filter outputy(n)

e(n)

^

adaptive

filter

y^x

y e

filter input

conditioning
input

filter
output

output
error

two-input, two-output system

Adaptive Filters



8

ADF
^x

y e

y

H(z)
unknown system

direct modeling

ADF
^x

y e

y

unknown system

inverse modeling

H(z)

System Modeling
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N-tap FIR
time-varying N most recent input

error signal  휀 𝑛 = 𝑦 𝑛 − 𝐻𝑇 𝑛 𝑋 𝑛 a posteriori

At each time index, cost function is minimized
weighted sum of squared error

𝑊: weight close to 1

Error Output and

Cost Function

𝐻 𝑛 =

ℎ0 𝑛

ℎ1 𝑛
⋮

ℎ𝑁−1 𝑛

𝑋 𝑛 =

𝑥 𝑛
𝑥 𝑛 − 1
⋮

𝑥 𝑛 − 𝑁 + 1

𝐽 𝑛 =  

𝑝=1

𝑛

𝑊𝑛−𝑝 𝑦 𝑝 − 𝐻𝑇 𝑛 𝑋 𝑝 2
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Normal Equation

find 𝐻(𝑛) which minimizes 𝐽(𝑛)

𝜕𝐽(𝑛)

𝜕ℎ𝑖(𝑛)
= −2 

𝑝=1

𝑛

𝑊𝑛−𝑝 𝑦 𝑝 − 𝐻𝑇 𝑛 𝑋 𝑝 𝑋 𝑝 = 0

 

𝑝=1

𝑛

𝑊𝑛−𝑝 𝑋 𝑝 𝑋𝑇 𝑝 𝐻 𝑛 =  

𝑝=1

𝑛

𝑊𝑛−𝑝 𝑋 𝑝 𝑦(𝑝)

𝐻 𝑛 = 𝑅−1 𝑛 𝑟𝑦𝑥(𝑛)

𝑅 𝑛 =  

𝑝=1

𝑛

𝑊𝑛−𝑝 𝑋 𝑝 𝑋𝑇 𝑝

𝑟𝑦𝑥 𝑛 =  

𝑝=1

𝑛

𝑊𝑛−𝑝 𝑋 𝑝 𝑦(𝑝)
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𝑅𝑥𝑥 = 𝐸 𝑋 𝑝 𝑋
𝑇(𝑝) signal autocorrelation matrix

𝑟𝑦𝑥 = 𝐸 𝑋 𝑝 𝑦 (𝑝) cross-correlation between 

input and reference

normal equation

Yule-Walker equation

Normal Equation (cont’d)

Optimal coefficient vector

𝑛 → ∞

𝐸 𝑅𝑁(𝑛) =
1 −𝑊𝑛

1 −𝑊
𝑅𝑥𝑥

𝐸 𝑟𝑦𝑥(𝑛) =
1 −𝑊𝑛

1 −𝑊
𝑟𝑦𝑥

𝐻𝑜𝑝𝑡 = 𝑅𝑥𝑥
−1𝑟𝑦𝑥
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update 𝐻(𝑛 + 1) from 𝐻(𝑛)

a priori error

Recursive algorithms

Now

But

and

 
𝑅 𝑛 + 1 = 𝑊𝑅 𝑛 + 𝑋 𝑛 + 1 𝑋𝑇(𝑛 + 1)

𝑟𝑦𝑥 𝑛 + 1 = 𝑊𝑟𝑦𝑥 𝑛 + 𝑋 𝑛 + 1 𝑦(𝑛 + 1)

𝐻 𝑛 + 1 = 𝑅−1 𝑛 + 1 𝑟𝑦𝑥 𝑛 + 1

= 𝑅−1 𝑛 + 1 𝑊𝑟𝑦𝑥 𝑛 + 𝑋 𝑛 + 1 𝑦(𝑛 + 1)

𝑊𝑟𝑦𝑥 𝑛 = 𝑊𝑅 𝑛 𝐻 𝑛

= 𝑅 𝑛 + 1 − 𝑋 𝑛 + 1 𝑋𝑇 𝑛 + 1 𝐻(𝑛)

𝐻 𝑛 + 1 = 𝑅−1 𝑛 + 1 𝑅 𝑛 + 1 − 𝑋 𝑛 + 1 𝑋𝑇 𝑛 + 1 𝐻 𝑛 + 𝑋 𝑛 + 1 𝑦 𝑛 + 1
= 𝐻 𝑛 + 𝑅−1 𝑛 + 1 𝑋(𝑛 + 1) 𝑦 𝑛 + 1 − 𝑋𝑇 𝑛 + 1 𝐻(𝑛)

𝑒(𝑛 + 1)
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Gradient - LMS Algorithm

•simple

•flexible

•robust

•easy to design

•performance is well characterized

Most widely used in all technical fields

such as communications and control

Looped structure makes the exact analysis

extremely difficult.

Under restrictive hypothesis not verified in practice.

Approximate investigations provide sufficient results.
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LMS Algorithm

gradient

𝛿: adaptation step size

to avoid complicated matrix  manipulation

𝑅−1(𝑛 + 1) ≅ 𝛿𝐼
Then

𝐻 𝑛 + 1 = 𝐻 𝑛 + 𝛿𝑋 𝑛 + 1 𝑒(𝑛 + 1)

𝑒 𝑛 + 1 = 𝑦 𝑛 + 1 − 𝑋𝑇 𝑛 + 1 𝐻(𝑛)
𝜕𝑒2(𝑛 + 1)

𝜕ℎ𝑖(𝑛)
= −2𝑥 𝑛 − 𝑖 + 1 𝑒(𝑛 + 1)
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LMS Algorithm (cont’d)

minimize the error power in the mean, thus LMS

for FIR filter   𝑒 𝑛 + 1 = 𝑦 𝑛 + 1 − 𝑋𝑇 𝑛 + 1 𝐻(𝑛)

and

𝐻 𝑛 + 1 = 𝐻 𝑛 + 𝛿𝑋 𝑛 + 1 𝑒(𝑛 + 1)

ℎ𝑖 𝑛 + 1 = ℎ𝑖 𝑛 − 𝛿
𝜕𝑒 𝑛 + 1

𝜕ℎ𝑖 𝑛
𝑒(𝑛 + 1)

𝜕𝑒 𝑛+1

𝜕ℎ𝑖 𝑛
𝑒 𝑛 + 1 is the gradient of 

1

2
𝑒2(𝑛 + 1)
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LMS Adaptive FIR Filter



x(n)

h0(n) h1(n)

z-1

+

z-1

z-1

+

z-1

+

+

z-1

z-1

+ +

e(n)

-
y(n)

y(n)^

hN-1(n)
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Stability Condition

a posteriori error 휀 𝑛 + 1 = 𝑦 𝑛 + 1 − 𝐻𝑇 𝑛 + 1 𝑋(𝑛 + 1)

a priori error  𝑒 𝑛 + 1 = 𝑦 𝑛 + 1 − 𝐻𝑇 𝑛 𝑋(𝑛 + 1)

coefficients before updating

system is stable if 

a posteriori error is smaller than a priori error

1 − 𝛿𝐸 𝑋𝑇 𝑛 + 1 𝑋 𝑛 + 1 < 1

some margin necessary

using 𝐻 𝑛 + 1 = 𝐻 𝑛 + 𝛿𝑋 𝑛 + 1 𝑒(𝑛 + 1)
휀 𝑛 + 1 = 𝑒(𝑛 + 1) 1 − 𝛿𝑋𝑇 𝑛 + 1 𝑋(𝑛 + 1)

0 < 𝛿 <
2

𝑁𝜎𝑥
2
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System Gain and

Time Constant

•system gain      𝐺𝑠
2 =
𝐸 𝑦2(𝑛)

𝐸 𝑒2(𝑛)

•time constant

𝐸 𝑒2(0) − 𝐸 𝑒2(∞) 𝑒−
2
𝜏 = 𝐸 𝑒2(1) − 𝐸 𝑒2(∞)

𝜏 is related to 𝛿

Two main specifications
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the gradient algorithm provides 

the optimal coefficient 𝐻𝑜𝑝𝑡

Steady State

𝐻 𝑛 + 1 = 𝐻 𝑛 + 𝛿𝑋 𝑛 + 1 𝑒(𝑛 + 1)

𝑒 𝑛 + 1 = 𝑦 𝑛 + 1 − 𝑋𝑇(𝑛 + 1)𝐻 𝑛

𝐻 𝑛 + 1 = 1 − 𝛿𝑋 𝑛 + 1 𝑋𝑇 𝑛 + 1 𝐻 𝑛 + 𝛿𝑋 𝑛 + 1 𝑦(𝑛 + 1)

𝑛 → ∞

𝐸 𝐻(∞) = 𝑅−1𝑟𝑦𝑥 = 𝐻𝑜𝑝𝑡
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after convergence

Leakage Factor

When input vanishes, coefficients are locked

It might be preferable to have them return to zero

𝐻 𝑛 + 1 = 1 − 𝛾 𝐻 𝑛 + 𝛿𝑋 𝑛 + 1 𝑒 𝑛 + 1
= 1 − 𝛾 𝐼 − 𝛿𝑋 𝑛 + 1 𝑋𝑇 𝑛 + 1 𝐻 𝑛 + 𝛿𝑦 𝑛 + 1 𝑋(𝑛 + 1)

𝐻∞ = 𝐸 𝐻(∞) = 𝑅 +
𝛾

𝛿
𝐼
−1

𝑟𝑦𝑥

𝛾 introduces a bias on the coefficients
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Exercise 8

1. Evaluate the mean and variance associated with the 
uniform probability density function on the interval [x1, x2].

2. Find the first three terms of the ACF of the AR signal
𝑥 𝑛 = 1.27𝑥 𝑛 − 1 − 0.81𝑥 𝑛 − 2 + 𝑒(𝑛), where 𝑒(𝑛) is 
a unit-power zero-mean white noise.

3. Consider the signal 𝑥 𝑛 = 0.8𝑥 𝑛 − 1 + 𝑒(𝑛) for 𝑛 ≥ 0
(𝑥 𝑛 = 0 for 𝑛 < 0), where 𝑒(𝑛) is a stationary zero mean 
random sequence with power 𝜎2 = 0.5.   The initial 
condition is x(0)=1.

Calculate the mean sequence mn=E[x(n)].  Give the 
recursion for the variance sequence.   What is the 
stationary solution.   Calculate the ACF of the stationary 
signal.

4. Read the following paper;

B. Widrow and M.E. Hoff, Jr., Adaptive Switching Circuits, 
IRE WESCON Convention Record, 4:96-104, August 1960. 


