#### **Filter Banks**



$$\begin{split} \hat{X}(z) &= F_0(z)Y_0(z) + F_1(z)Y_1(z) \\ &= F_0(z)\frac{1}{2}\{H_0(z)X(z) + H_0(-z)X(-z)\} + F_1(z)\frac{1}{2}\{H_1(z)X(z) + H_1(-z)X(-z)\} \\ &= \frac{1}{2}\{H_0(z)F_0(z) + H_1(z)F_1(z)\}X(z) + \frac{1}{2}\{H_0(-z)F_0(z) + H_1(-z)F_1(z)\}X(-z) \end{split}$$

1

#### **Perfect Reconstruction**

alias component X(-z) should vanish  $H_0(-z)F_0(z) + H_1(-z)F_1(z) = 0$ under this condition 1

 $\widehat{X}(z) = \frac{1}{2} \{ H_0(z) F_0(z) + H_1(z) F_1(z) \} X(z) = T(z) X(z)$ 

amplitude distortion is eliminated if T(z) is allpass

phase distortion is eliminated if T(z) has linear phase

both are eliminated if T(z) is a pure delay  $T(z) = cz^{-k_0}$ perfect reconstruction

#### Trivial PR System (Lazy Wavelet)

 $H_0(z) = 1, H_1(z) = z^{-1}, \qquad F_0(z) = z^{-1}, F_1(z) = 1$ 



delay chain filter bank

**QMF Bank** D.Esteban & C.Galand, 1979  $\underline{H}_1(z) = H_0(-z),$  $F_0(z) = H_1(-z), F_1(z) = -H_0(-z)$ alias elimination  $H_1$ : highpass if  $H_0$  is lowpass  $h_0$ Alternating signs:  $h_1(i) = (-1)^i h_0(i)$  $h_1$  $T(z) = \frac{1}{2} \{ H_0^2(z) - H_0^2(-z) \}$  $[H_0(z) \stackrel{z}{=} E_0(z^2) + z^{-1}E_1(z^2)]$  $f_1$  $= 2z^{-1}E_0(z^2)E_1(z^2)$ 

if  $H_0(z)$  is FIR, PR is possible if  $E_0$  and  $E_1$  are delays Thus  $H_0(z) = c_0 z^{-2n_0} + c_1 z^{-(2n_1+1)}$  moor response low distortion good response possible Johnston, 1980

# Conjugate Quadrature Filter Banks

M.J.T.Smith & T.P.Barnwell, 1986

 $H_{1}(z) = -z^{-L}H_{0}(-z^{-1}), F_{0}(z) = H_{1}(-z), F_{1}(z) = -H_{0}(-z)$  L: odd orderAlternating flip  $h_{1}(n): h_{0}(N-1), -h_{0}(N-2) \cdots$   $H_{0}: a \ b \ c \ d$   $H_{0}: a \ b \ c \ d$   $F_{0}: \ d \ c \ b \ a$   $f_{0}: u \ d \ d$   $f_{1}: d \ -c \ b \ -a$   $F_{1}: -a \ b \ -c \ d$ 

# **CQF Banks (cont'd)**

$$T(z) = \frac{1}{2} z^{-L} \{ H_0(z) H_0(z^{-1}) + H_0(-z) H_0(-z^{-1}) \}$$

 $\mathsf{PR} \Leftrightarrow H_0(z)H_0(z^{-1})$ : zero-phase half-band filter

#### $H_0$ : nonlinear phase

Spectral factorization of a half band filter

#### Lattice PR LP Vetterli & Le Gall, 1988 Nguyen & Vaidyanathan, 1989



# **Properties of Lattice Filter Banks**

- Long orthogonal or linear-phase filters, easily
- Perfect reconstruction even coefficients are quantized





linear-phase

orthogonal

#### PR Linear-Phase T.Nguyen & P.P.Vaidyanathan, 1989

$$H_0(z) = 0.5 + z^{-1}E_1(z^2)$$
 half band  
 $F_0(z) = H_1(-z)$   
 $F_1(z) = -H_0(-z)$ 

#### then

 $H_1(z) = 2z^{-1}$  meet the PR requirement (although it is trivial) because

$$T(z) = \frac{1}{2} \{H_0(z)F_0(z) + H_1(z)F_1(z)\}$$
  
=  $\frac{1}{2} \{(0.5 + z^{-1}E_1(z^2))(-2z^{-1}) - 2z^{-1}(0.5 - z^{-1}E_1(z^2))\}$   
=  $-2z^{-1}$ 

 $H_1^{\#}(z) = H_1(z) + 2E(z^2)H_0(z)$  is also a solution

**Lifting** W. Sweldens, 1996  
With 
$$F_0(z) = H_1(-z)$$
,  $F_1(z) = -H_0(-z)$ ,  
PR condition is  $T(z) = \frac{1}{2} \{H_0(z)F_0(z) + H_1(z)F_1(z)\}$   
 $= \frac{1}{2} \{H_0(z)H_1(-z) - H_0(-z)H_1(z)\} = z^{-1}$ 

Suppose this is satisfied. For fixed  $H_1(z)$ , the other possible choice for  $H_0(z)$  are  $H_0^{\#}(z) = H_0(z) + T_1(z^2)H_1(z)$ 

The new terms are  $T_1(z^2)H_1(z)H_1(-z) - T_1(z^2)H_1(z)H_1(-z) = 0$ 

PR condition kept 10

## Lifting (cont'd) $F_1^{\#}(z) = -H_0^{\#}(-z) = -H_0(-z) - T_1(z^2)H_1(-z)$ $= F_1(z) - T_1(z^2)F_0(z)$



 $T_1(z^2)$  displays the degrees of freedom which can be used to improve the filter response

#### **Dual Lifting**

#### High pass filter can also be lifted as $H_1^{\#}(z) = H_1(z) + T_2(z^2)H_0^{\#}(z)$



PR property kept even if lifting output is quantized.

#### Example

#### from a trivial delay-chain PR system $H_0(z) = 1, H_1(z) = z^{-1}, \quad F_0(z) = z^{-1}, F_1(z) = 1$

$$H_0^{\#}(z) = H_0(z) + T_1(z^2)H_1(z)$$
  
= 1 + z<sup>-1</sup>T\_1(z<sup>2</sup>) half band filter

For 
$$H_0^{\#}(z)$$
 to be low-pass  
 $T_1(1) = 1$ ,  $T_1(-1) = 0$   
For example, with  $T_1(z) = \frac{1}{16}(-z^2 + 9z + 9 - z^{-1})$   
 $H_0^{\#}(z) = \frac{1}{16}(-z^3 + 9z + 16 + 9z^{-1} - z^{-3})$   
 $= -z^3(1 + z^{-1})^4(1 - 4z^{-1} + z^{-2})$  Sixth-order maxflat  
noncausal but can be made causal by inserting appropriate delay

#### Orthogonal & Biorthogonal Filter Bank

Orthogonal Filter Bank

$$\sum h_0(n)h_0(n-2k) = c\delta(k)$$

 $H_0(z)$  is a half band filter

• Biorthogonal Filter Bank

$$\sum h_0(n)f_0(n-2k) = c\delta(k)$$

$$\sum h_1(n)f_1(n-2k) = c\delta(k)$$

 $F_0(z)H_0(z)$  is a half band filter

#### **Examples**



#### **Binary-Coefficient Filter Banks**

Binary coefficients: integer divided by a power of 2 (maxflat half band filters have binary coefficients)

Multiplication by binary coefficients shift and add

# roundoff error is eliminatedfastsmall size

Spectral factorization leads to non-binary coefficients

# Balancing

Move zeros at z = -1 between analysis and synthesis

Move 
$$\frac{1}{2}(1 + z^{-1})$$
 from  $F_0(z)$  to  $H_0(z)$ 

Multiply 
$$H_0(z)$$
 with  $\frac{1}{2}(1+z^{-1})$  and

divide 
$$F_0(z)$$
 with  $\frac{1}{2}(1 + z^{-1})$ 

This maintains binary coefficients and symmetry.

# **Balancing (example)**

1. 
$$\begin{cases} H_0(z) = 1\\ F_0(z) = \frac{1}{16}(-1+9z^{-2}+16z^{-3}+9z^{-4}-z^{-6}) \end{cases}$$
  
2. 
$$\begin{cases} H_0(z) = \frac{1}{2}(1+z^{-1})\\ F_0(z) = \frac{1}{8}(-1+z^{-1}+8z^{-2}+8z^{-3}+z^{-4}-z^{-5}) \end{cases}$$
  
3. 
$$\begin{cases} H_0(z) = \frac{1}{4}(1+2z^{-1}+z^{-2})\\ F_0(z) = \frac{1}{4}(-1+2z^{-1}+6z^{-2}+2z^{-3}-z^{-4}) \end{cases}$$



1. Show that alias and amplitude distortions can be eliminated for analysis filter bank given by

$$H_0(z) = (A_0(z) + A_1(z))/2$$
 and

$$H_1(z) = (A_0(z) - A_1(z))/2,$$

where  $H_1(z) = H_0(-z)$ , and  $A_0(z)$  and  $A_1(z)$  are unit-magnitude allpass functions, with the order  $n_0$  and  $n_1$  such that  $N = n_0 + n_1$ , where N is the order of  $H_0(z)$  and  $H_1(z)$ .

- 2. For  $H_0(z) = (1 + z^{-1})/2$ , find other three filters so that the system becomes perfect reconstruction.
- 3. Show that the following filters satisfy the perfect reconstruction conditions.  $H_0(z) = (-1 + 2z^{-1} + 6z^{-2} + 2z^{-3} - z^{-4})/4, H_1(z) = (1 - 2z^{-1} + z^{-2})/4$  $F_0(z) = H_1(-z), F_1(z) = -H_0(-z),$
- 4. Check the orthogonality or biorthogonality of the filter banks shown in the previous two questions.
- 5. Read the following paper;

M. Smith & T. Barnwell, Exact reconstruction techniques for tree-structured subband coders, IEEE Trans. on Acoustics, Speech and Signal Processing, Vol. 34, 3, pp. 434-441, June 1986