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Finite Wordlength Effects

Binary number representation
•Fixed Point

𝑓 = 𝑎0. 𝑎1𝑎2⋯𝑎𝐿−1
negative numbers can be expressed by

•two’s complement

•one’s complement

•sign magnitude

𝑓(10) = −𝑎0 + 𝑎12
−1 +⋯+ 𝑎𝐿−12

−(𝐿−1)

•Floating Point

a0  a1  a2                ··· aL-1

binary point

sign bit
most significant bit

least significant bit

m0  r0  r1                rE m1   ··· mM

sign bit

binary point

sign of exponent

exponent

mantissa
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Quantization

•Reduction of Wordlength

•roundoff

add 1 to LSB if the next bit is 1

do nothing if 0

•truncation

truncate the following bits

*

add 1 if 1
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Quantization Error

When a number is rounded to B bit

•Fixed Point

𝜀 = 𝑌 − 𝑋

−
𝑄

2
< 𝜀 ≤

𝑄

2
, 𝑄 = 2−𝐵

•Floating Point

𝜀 = (𝑌 − 𝑋)/𝑋

−
𝑄

2
< 𝜀 ≤

𝑄

2
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Finite Wordlength Effects

 round off operation

noise                   uncorrelated error  :  random

limit cycles          correlated

overflow

all are related to network structure (direct, 
cascade ......)

sensitivity

• deviation of frequency response 
due to finite-wordlength coefficients
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Round off Operation

n-bit n-bit

=
2n-bit

full precision cannot be kept

n-bit

for uniform distribution, zero mean and

quantization

•roundoff

•truncation



Q/2-Q/2 0

p

error

error ≤
𝑄

2
𝑄: stepsize

𝜎2 =  
−∞

∞

𝑥2𝑝 𝑥 𝑑𝑥 =  
−𝑄/2

𝑄/2 1

𝑄
𝑥2𝑑𝑥 =

1

𝑄

𝑥3

3
−𝑄/2

𝑄/2

=
𝑄2

12
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Linear Model of Quantization

Q

+

+

filter

input

filter

output

𝑒𝑖(𝑛)

𝑒(𝑛)

𝑒𝑜(𝑛)𝑔𝑖(𝑛)

𝑒𝑜 𝑛 =  

𝑘=−∞

∞

𝑔𝑖 𝑛 − 𝑘 𝑒𝑖(𝑘)

𝑒𝑜
2(𝑛) =  

𝑘=−∞

∞

𝑔𝑖 𝑛 − 𝑘 𝑒𝑖(𝑘)

2

=  

𝑛=−∞

∞

𝑔𝑖
2 𝑛 𝜎2
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Noise Gain

using Parseval’s equation

For multiple noise sources

if noises are uncorrelated

noise gain

𝜎𝑖
2 = 𝑒𝑜

2(𝑛) = 𝜎2
1

2𝜋𝑗
 𝐺𝑖 𝑧 𝐺𝑖 𝑧

−1
𝑑𝑧

𝑧

𝜎𝑜
2 = 

𝑖=1

𝑀

𝜎𝑖
2 = 𝜎2 

𝑖=1

𝑀
1

2𝜋𝑗
 𝐺𝑖 𝑧 𝐺𝑖 𝑧

−1
𝑑𝑧

𝑧
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Scaling

adjust internal signal level so that 

the output SN ratio is maximized
S

digital

filter
scaling 

multiplier
Scaling strategy
•no overflow for any input sequence 

---too pessimistic

•lp norm scaling     𝐹𝑖 𝑝 =
1

𝜔𝑠
 0
𝜔𝑠 𝐹𝑖 𝑒

𝑗𝜔𝑇 𝑝 𝑑𝜔
1/𝑝

𝐹𝑖 𝑧 : transfer function from 

the input to the internal node 𝑖

1/S
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Example of Limit Cycles

+ 𝑧−1

Quantizer

absolute value 

rounded to integer

zero input case

𝑦 𝑛 = −0.8𝑦 𝑛 − 1 𝑄, 𝑦 0 = 10

𝑦 1 = −0.8𝑦(0) 𝑄 = −0.8 × 10 𝑄 = −8 𝑄 = −8

𝑦 2 = −0.8𝑦(1) 𝑄 = −0.8 × (−8) 𝑄 = 6.4 𝑄 = 6

𝑦 3 = −0.8𝑦(2) 𝑄 = −0.8 × 6 𝑄 = −4.8 𝑄 = −5

𝑦 4 = −0.8𝑦(3) 𝑄 = −0.8 × (−5) 𝑄 = 4 𝑄 = 4

𝑦 5 = −0.8𝑦(4) 𝑄 = −0.8 × 4 𝑄 = −3.2 𝑄 = −3

𝑦 6 = −0.8𝑦(5) 𝑄 = −0.8 × (−3) 𝑄 = 2.4 𝑄 = 2

𝑦 7 = −0.8𝑦(6) 𝑄 = −0.8 × 2 𝑄 = −1.6 𝑄 = −2

𝑦 8 = −0.8𝑦(7) 𝑄 = −0.8 × (−2) 𝑄 = 1.6 𝑄 = 2
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Filter Structures

+

z -1 z -1

z -1

z -1

z -1

z -1

z -1

z -1

z -1
+ +

z -1

z -1
+ +

z -1

z -1
+ +

-an

-bn

cn

dn

Direct Form I Direct Form II

•exchange of the order
•common use of the delays

Cascade Form

factorization of the transfer function
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4th-order LPF

𝐻 𝑧 =
0.0018 1 + 𝑧−1 4

(1 − 1.55𝑧−1 + 0.65𝑧−2)(1 − 1.50𝑧−1 + 0.85𝑧−2)
is realized using 8bit coefficients

ideal

cascade

direct

ideal response overlaps with the cascade

Example of Coefficient Rounding

𝑓𝑠 = 1𝑘𝐻𝑧
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cf. Numerical Error

For the solution of linear algebraic equations

• Gauss-Jordan Elimination

• Gaussian Elimination with Back substitution

• LU Decomposition

• etc.

Depending on the algorithm, computational 
complexity and numerical accuracy are different

Choice of filter structures ~ choice of computational algorithms
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Simulation of reactance circuit

available power

reactance

(lossless)V1

R
R~

V2

consumed power

𝑉1
2

4𝑅
≥

𝑉2
2

𝑅
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Matching

maximum power transfer 
|𝐻| is bounded

frequency

matching points𝑉2
𝑉1

1

2
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at a matching point

reactance 𝑥

sensitivity 
𝜕|𝐻|

𝜕𝑥
is zero at matching frequencies 

and low in the passband

𝑉2
𝑉1
1

2

𝑥0
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voltage-current simulation

R2

leap frog

V3

V2V1 -1

1

1

R 1

1

Cs 2

1

Ls
3

1

Cs 2

1

R

-1 -1 I3I1 I2

-1

R1

C1
C3

L2

~

V1

I1 I2

I3

V3

V2

widely used in RC active and switched capacitor filters
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Delay-free Loops

+
+

z -1

z -1

+

+

+

+ -

-

integrator bilinear transformation

1

𝑠

1+𝑧−1

1−𝑧−1
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𝐵 = 𝑧−1𝐴 𝐵 = −𝑧−1𝐴 𝐵 = 0 𝐵 = −𝐴 𝐵 = 𝐴 𝐵 = 𝐸 𝐵 = 2𝐸 − 𝐴

z -1
z -1

+

s
R sR

R

-1

-1

E E

R

E
2E



more precisely : voltage waves

incident wave A=V+RI

reflected wave B=V-RI R : port resistance

one-part elements sources

A

B

A

B

A

B=0

A

B

A

B

A

B

A

B

Simulation in terms of

Wave Quantities
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Interconnections and Adaptors

•Kirchhoff ’s voltage law

•Kirchhoff ’s current law

Parallel connection of n ports

Series connection of n ports

are interpreted in terms of waves using

𝐴𝑘 = 𝑉𝑘 + 𝑅𝑘𝐼𝑘
𝐵𝑘 = 𝑉𝑘 − 𝑅𝑘𝐼𝑘

𝑘 = 1, 2,⋯ , 𝑛
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Parallel Connection

where 𝛾𝑘 =
2𝐺𝑘

𝐺1+𝐺2+⋯+𝐺𝑛
, 𝐺𝑘 =

1

𝑅𝑘

𝛾1 + 𝛾2 +⋯+ 𝛾𝑛 = 2

𝐼1 + 𝐼2 +⋯+ 𝐼𝑛 = 0, 𝑉1 = 𝑉2 = ⋯ = 𝑉𝑛

𝐵𝑘 = 𝛾1𝐴1 + 𝛾2𝐴2 +⋯+ 𝛾𝑛𝐴𝑛 − 𝐴𝑘 , 𝑘 = 1, 2,⋯ , 𝑛

𝑉1

𝐼1

𝑉2

𝐼2

𝑉𝑛

𝐼𝑛

𝐴1
𝐵1

𝐴2𝐵2

𝐴𝑛
𝐵𝑛
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+

+

+

+
 A1

A2

A3B1

B2

B3

port 3 : dependent port 

𝛾1||𝛾2

A1

A3

A2

B1 B2

B3

R1

R3

R2

constrained three-port parallel adaptor
•with  port3  reflection-free

•and   port2  dependent

𝛾1||
A1

A2

A3
B1

B3

B2

R1

R2

R3

Parallel Adapters

+

+

+

+

+
 

A1

A3

A2

B1 B2

B3
𝛾𝑘 =

2𝐺𝑘
𝐺1 + 𝐺2 + 𝐺3

, 𝑘 = 1,2

𝛾1 =
𝐺1
𝐺1 + 𝐺2

=
𝐺1
𝐺3

• if 𝛾3 = 1, i.e. 𝐺3 = 𝐺1 + 𝐺2

−𝛾1

−𝛾1 − 𝛾2
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Series Connection

𝑉1 + 𝑉2 +⋯+ 𝑉𝑛 = 0, 𝐼1 = 𝐼2 = ⋯ = 𝐼𝑛
𝐵𝑘 = 𝐴𝑘 − 𝛾𝑘 𝐴1 + 𝐴2 +⋯+ 𝐴𝑛 , 𝑘 = 1, 2,⋯ , 𝑛

where 𝛾𝑘 =
2𝑅𝑘

𝑅1+𝑅2+⋯+𝑅𝑛

𝛾1 + 𝛾2 +⋯+ 𝛾𝑛 = 2

𝑉1
𝐴1
𝐵1

𝐼1

𝑉2
𝐼2

𝐴2

𝑉𝑛
𝐴𝑛
𝐵𝑛

𝐼𝑛

𝐵2
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port 3 : dependent port 

2,1
2

321




 k
RRR

Rk
k B3

+

+

+

A1

A3

A2

B1 B2

+

-1

A2

B2

+

+

+

+

A1

A3
B1

B3

-1

-1

𝛾1 𝛾2

A1

A3

A2

B1 B2

B3

R1

R3

R2

𝛾1

A1

A2

B3

B1 A3

B2

R1

R2

R3

constrained three-port parallel adaptor
•with  port3  reflection-free

•and   port2  dependent

Series Adapters

𝛾1 =
𝑅1
𝑅1 + 𝑅2

=
𝑅1
𝑅3

• if 𝛾3 = 1, i.e. 𝑅3 = 𝑅1 + 𝑅2

−𝛾1 − 𝛾2

−𝛾1



24

Interconnection Rules

1. grouping of terminals into ports must remain 
respected

2. waves must flow in the same direction

3. two port resistances must be the same

4. connection must not make delay-free loops

𝐵1 𝐴2

𝐴1 𝐵2

𝑅 𝑅
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Wave Digital Filters

• low sensitivity

• limit cycles can easily be suppressed

• forced response stability

• stability under looped condition
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R2

R1

C1 C3

L2

~ C2

R2

R1

C1 C3

L2C2

R1
R2

1/C1

1/C2

1/C3

L2

five multipliers in general cases
four multipliers if symmetric

||𝛾5

z -1z -1

𝛾2 𝛾4𝛾1||

𝛾3||
z -1

z -1
1

X1

Y1

Y2

0

Third-order Filter

𝑌1
𝑋1

2

+
𝑌2
𝑋1

2

= 1

𝑌1
𝑋1

𝑌2
𝑋1

1

0 𝜔
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z 1

z 1

=

Z1

Z2

V1 V2R R

I1 I2

if 𝑍1 and 𝑍2 are reactances

𝑆1 and 𝑆2 are all-paass fucntions.

Symmetric Case

Bartlett’s bisection theorem

𝑉1
𝑉2
=

𝑍1 + 𝑍2
2

𝑍2 − 𝑍1
2

𝑍2 − 𝑍1
2

𝑍1 + 𝑍2
2

𝐼1
𝐼2

𝐴𝑘 = 𝑉𝑘 + 𝑅𝑘𝐼𝑘
𝐵𝑘 = 𝑉𝑘 − 𝑅𝑘𝐼𝑘

, 𝑘 = 1,2

𝐵1
𝐵2
=

𝑆1 + 𝑆2
2

𝑆1 − 𝑆2
2

𝑆2 − 𝑆1
2

𝑆1 + 𝑆2
2

𝐴1
𝐴2

where 𝑆𝑘 =
𝑍𝑘−𝑅

𝑍𝑘+𝑅
,  𝑘 = 1,2

reflection coefficient
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for the realization of 𝑆1 and 𝑆2 themselves, 
any methods can be used.

for example,   Cauer
cascade of all-pass sections

for A2=0

B2
A1

S1

S2

+


++

++

S1 S2

B1 B2

A2A1





Lattice Wave Digital Filters

parallel of two all-pass filters
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R

R

C1 C1

L2

C2

C1+2C2

Z1: Z2: C1

𝛾1||𝛾2z-1

z-1

z-1

+-

1

||


three multipliers

symmetry

odd-order     Butterworth, Chebyshev and elliptic

example

1

2

𝐿2
2
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WDF structures may become very complicated 
when general transfer functions are realized.

Simple recursive structures + weighted taps 
cascade unit elements (vocal tract)

z -1

+

|| || ||
z -1 z -1

Digital Lattice Filters

internal circuit of two-port adaptor

+

+

+

 

km +

+

 km

km

one-multiplier lattice two-multiplier lattice
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Simulation of

Physical Systems

• Wave digital filters physically model passive RLC circuits

• Can model any systems described by (ordinary or partial)

differential equations (both linear and non-linear) with high 

degrees of parallelism and locality

• A “traveling wave” view (at the speed of light) is much closer to 

underlying physical reality than any instantaneous models

• The bilinear transform is equivalent in the time domain to the 

trapezoidal rule for numerical integration

• In discretizing space-time continuum, we can get stability and 

robustness, unlike Courant-Friedrichs-Lewy Condition which is 

necessary but not strictly sufficient

Courant, R., Friedrichs, K., and Lewy, H., "Über die partiellen 

Differenzengleichungen der mathematischen Physik", 

Mathematische Annalen 100 (1): 32–74 1928 (English versions in 

1956 and 1967)
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Exercise 3

1. For the zero-input first-order digital filter in Slide 9, 

what is a multiplier coefficient range that does not 

cause any limit cycle oscillation?

2. Show that the wave digital filter for a capacitor with its 

impedance 1/𝑠𝐶 is a simple delay, where the port 

resistance is 𝑅 = 1/𝐶.

3. Derive a wave digital filter structure for a voltage 

source E with a series inductive impedance 𝑠𝐿, where 

the port resistance is 𝑅 = 𝐿.

4. Read the following paper;

A.Nishihara & M.Murakami, Signal-Processor-Based 

Digital Filters Having Low Sensitivity, Electronics 

Letters, 20, 8, pp.325-326, Apr. 1984


