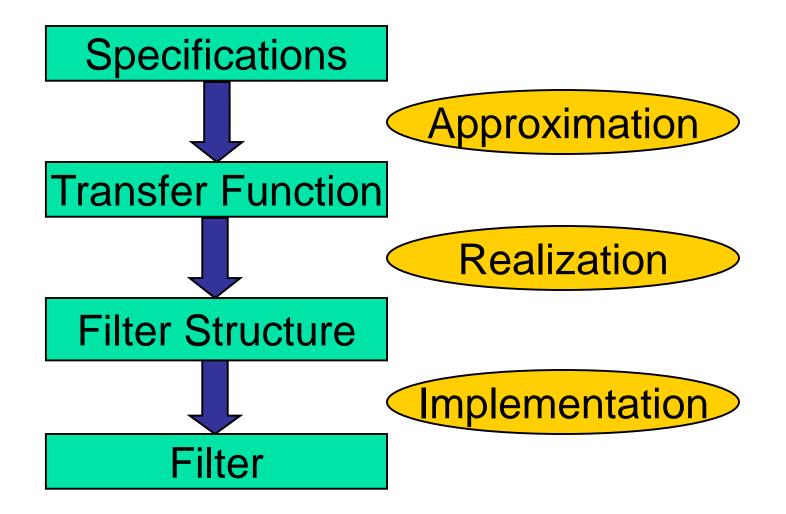
Digital Filter Design Procedure



Digital Filter Design

FIR

- possibly linear-phase response
- always stable
- IIR
 - sharp cutoff with lower order

Different Design Methods

Design of FIR Filters having Linear-Phase N-tap (N-1th order) FIR Filter $H(z) = \sum h(n) z^{-n}$ N-1 $H(e^{j\omega}) = \sum h(n)e^{-jn\omega}$ n=0

has linear-phase if it can be written as $H_1(\omega)e^{-j(\alpha\omega+\beta)}$, where H_1 is a real even function in ω

When $H_1(\omega)$ is positive $\arg H(e^{j\omega}) = -\alpha\omega - \beta$ When $H_1(\omega)$ is negative $\arg H(e^{j\omega}) = -\alpha\omega - \beta - \pi_{-3}$

Four Types of Linear-Phase FIR Filters (1)

• N = 2M + 1, h(n) = h(N - 1 - n), for all n

 $H(e^{j\omega}) = \sum_{n=-M}^{M} h(M+n)e^{-j(n+M)\omega} = e^{-jM\omega} \{h(M) + 2\sum_{n=1}^{M} h(M+n)\cos n\omega\}$

$$\begin{cases} \alpha = M, \beta = 0\\ H_1(\omega) = h(M) + 2\sum_{n=1}^M h(M+n) \cos n\omega \end{cases}$$

$$N = 2M, h(n) = h(N-1-n) - 1$$

$$\begin{cases} \alpha = M - \frac{1}{2}, \beta = 0\\ H_1(\omega) = 2\sum_{n=1}^M h(M + n - 1)\cos\left(n - \frac{1}{2}\right)\omega \end{cases}$$

Four Types of Linear-Phase FIR Filters (2)

•
$$N = 2M + 1, h(n) = -h(N - 1 - n)$$

$$\begin{cases} \alpha = M, \beta = \frac{\pi}{2} \\ H_1(\omega) = 2\sum_{n=1}^M h(M+n) \sin n\omega \end{cases}$$
$$N = 2M, h(n) = -h(N-1-n)$$

$$\begin{cases} \alpha = M - \frac{1}{2}, \beta = \frac{\pi}{2} \\ H_1(\omega) = 2\sum_{n=1}^M h(M + n - 1) \sin\left(n - \frac{1}{2}\right) \omega \end{cases}$$

Fourier Series Design

 $H_d(\omega)$: desired response periodic function with period 2π \mathbb{I} expressed using DTFT $H_d(\omega) = \sum_{n=-\infty}^{\infty} h_d(n) e^{-jn\omega}$, $h_d(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} H_d(\omega) e^{jn\omega} d\omega$ $h_d(n)$: real $\Leftrightarrow H_d(-\omega) = H_d^*(\omega)$ $H_d(\omega)$: real $\Leftrightarrow h_d(n) = h_d(-n)$ (e.g. ideal lowpass) $H_d(\omega)$: pure imaginary $\Leftrightarrow h_d(n) = -h_d(-n)$ (e.g. differentiator $H_d(\omega) = j\omega$)

Mean Squared Error

$$H_1(e^{j\omega}) = \sum_{n=n_1}^{n_2} h_1(n)e^{-jn\omega} \text{ is designed}$$

so that mean squared error
$$\varepsilon^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |H_d(\omega) - H_1(e^{j\omega})|^2 d\omega \text{ is minimized}$$

Parseval's equation

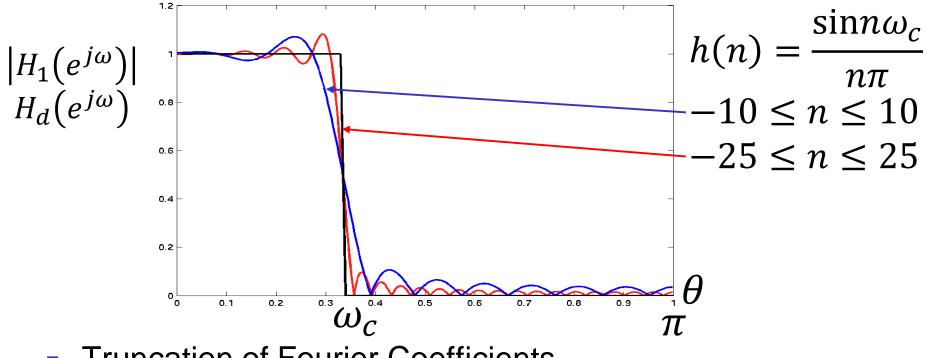
$$\varepsilon^2 = \sum_{n=-\infty}^{\infty} |h_d(n) - h_1(n)|^2$$

The solution is $h_1(n) = h_d(n)$ $(n_1 \le n \le n_2)$

If $H_d(\omega)$ is a real even function and $n_1 = -M, n_2 = M$ $H_1(e^{j\omega})$ is also real and even A causal filter is obtained as

$$h(n) = h_1(n - M) \stackrel{DTFT}{\longleftrightarrow} H(e^{j\omega}) = e^{-jM\omega} H_1(e^{j\omega})$$

Gibbs Phenomenon



Truncation of Fourier Coefficients

- oscillation in frequency response
- sharp over- and under-shoot around discontinuous point

Gibbs Phenomenon J.W.Gibbs, "Fourier Series", Nature, 1899

Window Design

Fourier coefficients are smoothly truncated using a window function w(n) $h_1(n) = h_d(n)w(n) \stackrel{DTFT}{\longleftrightarrow} H_1(e^{j\omega}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} H_d(\phi) W(e^{j(\omega-\phi)}) d\phi$

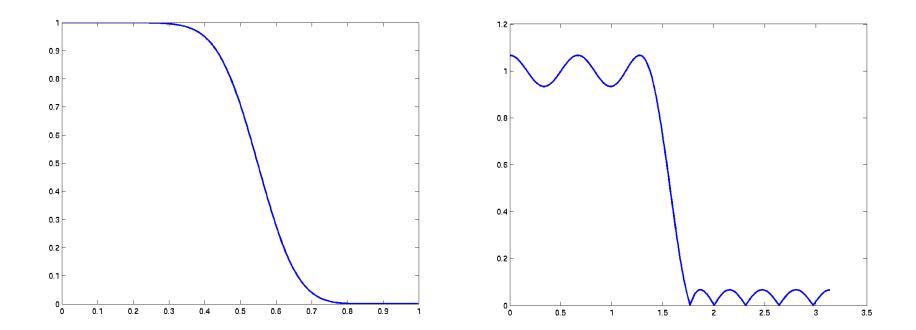
Rectangular window
$$w(n) = \begin{cases} 1 & |n| \leq M \\ 0 & otherwise \end{cases}$$
Hann window $w(n) = \begin{cases} 0.5 + 0.5 \cos\left(\frac{\pi}{M}n\right) & |n| \leq M \\ 0 & otherwise \end{cases}$ Hamming window $w(n) = \begin{cases} 0.54 + 0.46 \cos\left(\frac{\pi}{M}n\right) & |n| \leq M \\ 0 & otherwise \end{cases}$ Kaiser window $w(n) = \begin{cases} \frac{I_0\left(\beta\sqrt{1-\left(\frac{n}{M}\right)^2}\right)}{I_0(\beta)} & |n| \leq M \\ 0 & otherwise \end{cases}$ Kaiser window $w(n) = \begin{cases} \frac{I_0\left(\beta\sqrt{1-\left(\frac{n}{M}\right)^2}\right)}{I_0(\beta)} & |n| \leq M \\ 0 & otherwise \end{cases}$ Square errors increases but

Ripple decreases, not optimum in any sense

9

Optimum Design

maximally flat mini max



Maximally Flat Filters

Maximum possible vanishing derivatives of $H(e^{j\omega})$ at $\omega = 0$ and π Analytical solution available;

$$H_{N,K,d}(z) = \left(\frac{1+z^{-1}}{2}\right)^{K} \sum_{j=0}^{N-K} \sum_{i=0}^{j} (-1)^{j-i} \left(\frac{N}{2} - d\right) \left(\frac{N}{2} + d\right) \left(\frac{1-z^{-1}}{2}\right)^{j} \left(\frac{1+z^{-1}}{2}\right)^{N-K-j}$$

N: filter order *K*: the number of zeros at z = -1*d*: group delay is $\frac{N}{2} + d$ at $\omega = 0$

JAVA applet available at http://www.nh.cradle.titech.ac.jp/old/maxflat/

Minimax Design

Chebyshev error $\max_{\omega} |H_d(\omega) - H_1(e^{j\omega})| \text{ is minimized}$ for odd *N* and even symmetry, for example

$$H_1(e^{j\omega}) = h_1(0) + 2\sum_{n=1}^M h_1(n) \cos n\omega = p(\cos \omega)$$

p(x): *M*-th order polynomial in x $\cos n\omega = T_n(\cos \omega)$ Chebyshev polynomial

Chebyshev's Theorem

For a continuous function d(x) in $-1 \le x \le 1$

- 1. There exist a unique function p(x) with the order at most *N* such that $\max_{x} |d(x) p(x)|$ is minimized.
- 2. A function is that p(x) if and only if

$$d(x_i) - p(x_i) = (-1)^i \varepsilon, i = 0, 1, \dots, N + 1$$
 (equiripple)

holds at N + 2 points, x_i where $-1 \le x_0 < x_1 < \cdots < x_{N+1} \le 1$

Minimax Solution

Not analytically solved.

(it is easy if x_i 's are known)

 Numerical solution Remez exchange algorithm
 free software
 MATLAB

Design of IIR Filters

$$H(z) = \frac{\sum_{i=0}^{N} a_i z^{-i}}{1 + \sum_{i=1}^{N} b_i z^{-i}}$$

Use known theories for continuous filters

Mapping $s \rightarrow z$ Certain index must be preserved

Impulse Invariance

Impulse response of a digital filter = samples of IR of a model continuous-time filter

$h(n) = T\hat{h}(nT)$

 $\widehat{H}(s)$: *N*-th order transfer function

- Numerator order < denominator order
- No multiple roots in denominator

$$\widehat{H}(s) = \frac{c_1}{s - p_1} + \frac{c_2}{s - p_2} + \dots + \frac{c_N}{s - p_N} = \sum_{i=1}^N \frac{c_i}{s - p_i}$$

Impulse Response

$$\hat{h}(t) = c_1 e^{p_1 t} + c_2 e^{p_2 t} + \dots + c_N e^{p_N t}, \quad t > 0$$

is sampled at $t = nT$
$$h(n) = T c_1 e^{p_1 nT} + T c_2 e^{p_2 nT} + \dots + T c_N e^{p_N nT}$$

Its *z*-transform is

$$H(z) = \sum_{i=1}^{N} \frac{Tc_i}{1 - e^{p_i T} z^{-1}}$$

Frequency response is expressed as

$$H(e^{j\omega T}) = \sum_{k=-\infty}^{\infty} \widehat{H}\left(j\omega + jk\frac{2\pi}{T}\right)$$
 (because of sampling) which includes aliases

The method is valid only when $|\hat{H}(j\frac{\pi}{\tau})|$ is small enough

s-z Transform

$$\begin{split} &H(e^{j\omega}) = \widehat{H}(j\Omega(\omega))\\ &\text{No alias effect occurs if}\\ &-\pi \leq \omega \leq \pi \text{ corresponds to entire } -\infty \leq \Omega \leq \infty\\ &\text{Mapping } z = \varphi(s) \text{ or }\\ &\widehat{H}(s) = H(\varphi(s)) \end{split}$$

Conditions for the mapping

- 1. $j\Omega$ axis corresponds to the unit circle: $\varphi(s) = e^{j\omega}$
- 2. Inverse transform $s = \varphi^{-1}(z)$ exists: $H(z) = \widehat{H}(\varphi^{-1}(z))$
- 3. Stability preserved: $Re(s) < 0 \Leftrightarrow |\varphi(s)| < 1$
- 4. DC response preserved: $\varphi(0) = 1$

Mapping which satisfies all the above ↓ Bilinear Transform

Bilinear Transform

$$z = \varphi(s) = \frac{1+s}{1-s}$$

$$s = \frac{z-1}{z+1}$$

substitution of $z = e^{j\omega}$ leads to

$$j\Omega(\omega) = \frac{e^{j\omega-1}}{e^{j\omega+1}} = j \tan \frac{\omega}{2} \Rightarrow \Omega(\omega) = \tan \frac{\omega}{2}$$

$$H(z) = \widehat{H}\left(\frac{z-1}{z+1}\right)$$

http://momiji.i.ishikawa-nct.ac.jp/dfdesign_eng/iir/i_lpf.shtml 20

Other Design Method

- Eigen filter
- Time-domain design
- Linear Programming
- Semi definite Programming
- etc.

- 1. If $h(n) = h^*(-n)$, what is the specific feature of its frequency response $H(e^{j\omega})$?
- 2. What is the advantage of linear phase property in digital filters?
- 3. Obtain the filter coefficients using the program at <u>http://www.nh.cradle.titech.ac.jp/old/maxflat/PlotMFnew.htm</u> with N = 10, K = 5, d = 0, and discuss about the results.
- 4. In some textbooks the bilinear transformation is defined by

$$s = \frac{2}{T} \frac{z-1}{z+1},$$

which is different from the one in this lecture. Explain the physical meaning of the difference.

5. Read the following paper;

O. Hermann and W.Schuessler, Design of nonrecursive digital filters with minimum phase, Electronics Letters, vol. 6, Issue 11, pp.329-330, May 1970 22