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Implementation of

DSP Algorithms

• Main frame computers

• Dedicated (application specific) 

architectures

• Programmable digital signal processors 

– voice band data modem

– speech codec
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PDSP and

General-Purpose MPU

mPD7720(1980) 8086(1979) M68000(1980)

Technology 3mNMOS 3mNMOS 3mNMOS

Clock rate 4MHz 8MHz 8MHz

# of Tr. 40k 29k 68k

Bus width
16bit data

23bit inst.

16bit data

16bit inst.

16bit data

16bit inst.

MAC/sec 4M 50k 100k

Power 0.9w 1.7W 1.5w
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Recent PDSP

• Eight DSP Core, Each with
– 1.25 GHz Fixed/Floating-Point Core

• 40 GMAC/Core for Fixed Point @ 1.25 GHz

• 20 GFLOP/Core for Floating Point @ 1.25 GHz

– Memory

• 32K Byte L1P Per Core

• 32K Byte L1D Per Core

• 512K Byte Local L2 Per Core

• Multicore Shared Memory Controller (MSMC)
– 4096KB MSM SRAM Memory Shared by Eight DSP

• Network Coprocessor

• 0.9 V to 1.2 V Core Supply

• 1.8 V, 1.1 V IO Supply
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Features of PDSP

• Support repetitive, numerically intensive tasks 

• Powerful data path 

• Ability to move large amounts of data to and from 
memory quickly

• Special instruction set to exploit hardware efficiently 

𝑦 𝑛 = ℎ0𝑥 𝑛 + ℎ1𝑥 𝑛 − 1 +⋯+ ℎ𝑁−1𝑥(𝑛 − 𝑁 + 1)
– fast multiply-accumulation

– multiple-access memory architecture

typical example
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Data Path

• Multiplier and Accumulator 

– high-speed hardware multiplier

– integrated with an adder

• ALU

– basic arithmetic and logic operation

• Shifter (to scale the data by a power of 2)

– barrel shifter

• Overflow and Saturation

– overflow can be handled either scaling down the 

result or by saturation arithmetic
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Data Bus

Address Bus

Memory Architecture

• Von Neumann memory architecture

Processor Core

Memory
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DSP Memory Architecture

Data Bus 2

Address Bus 2

Processor Core

Memory A Memory B

Address Bus 1

Data Bus 1

Basic Harvard Architecture
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Modified Harvard 

Architecture

Data Bus 2

Address Bus 2

Processor Core

Memory A Memory B

Address Bus 1

Data Bus 1

dual-ported memory

Data Bus 3

Address Bus 3

single-ported memory
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Memory Access

Parallel memory banks increase bandwidth

Instructions must specify several memory accesses

Instruction word gets longer

larger memory space or more memory cycles

simplification needed
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Register-Indirect 

Addressing

• special Address Generation Unit(s)

– performs one or more complex address 

calculations per instruction cycle without 

using the processor’s data path

• pre- or post- increment or decrement 

modes
𝑛 − 1
𝑛

𝑛 + 1

decrement

increment
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Pipelining

• A sequence of operations are broken into 
smaller pieces, which are executed in parallel.

• Pipelining breaks instruction execution into 
several pipelining stages and allows multiple 
instructions to be overlapped in execution.

• Pipelining exploits parallelism among the 
instructions in a sequence of instruction stream, 
and yields a reduction in the average execution 
time per instruction.

• Pipelining speeds up the computation,

but makes programming complicated
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Time-Stationary Coding

• Programmer have more explicit control 

over the pipeline stages.

• An instruction explicitly specifies several 

operations such as simultaneous 

operand fetch and execute operations, 

to be performed in parallel.

MAC XO,YO,A   X:(RO)+, XO   Y:(R4)-, YO

a0=a0+p    p=x*y   x=*r0++    y=*r1++
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Data-Stationary Coding

• A single instruction specifies all the operations 
performed on a set of operands from memory

• but does not indicate the exact time when these 
operations are executed.

• the value in the memory locations pointed by 
registers r3 and r4 are fetched and multiplied,

• the value that was pointed to by register r4 is 
written back to the memory location pointed to 
by register r5, and 

• the result of multiplication is accumulated in 
register a1.

a1 = a1 + (*r5++ = *r4++)* *r3++
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Time-Stationary and Data-

Stationary Approaches

Each has advantages and disadvantages

• Time-stationary coding

– programmers carry out part of the scheduling 

• Data-stationary coding

– programmers specify the operations to be 

performed, and leave the scheduling tasks to 

the compiler.

– easier to read out but not as flexible as time-

stationary approach
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Processors for Multimedia

• Frequent use of small integer operands

• Highly regular computation-intensive 

operations

• Intensive I/O or memory access, data 

reusability, and data locality

• Complex control operations in less 

computationally intensive tasks

audio, speech, image, video, 2D & 3D graphics, etc.
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Program

Processing 

Unit

Processing 

Unit

Processing 

Unit

Processing 

Unit

SIMD architecture

Multiprocessing



17

Program

Processing 

Unit

Processing 

Unit

Processing 

Unit

Processing 

Unit

MIMD architecture

Program Program Program

Multiprocessing (cont’d)
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A

B

x1 x2 x3 x4

y1 y2 y3 y4

Split 64-bit ALU

Split 64-bit ALU

Subword Parallelism
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Graphics Processing Unit

• specialized unit designed to accelerate image output 

in a frame buffer intended for output to a display

• very efficient at manipulating computer graphics and 

generally more effective than general-purpose CPUs 

for algorithms where large blocks of data are 

processed in parallel

• can be used together with a CPU to accelerate 

general-purpose scientific and engineering 

applications

• CPU: a few cores optimized for serial processing, 

GPU: lots of smaller, more efficient cores designed 

for parallel performance

• TSUBAME 2.5, TSUBAME KFC
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Exercise 13

1.Find out the origin of the term “Harvard” 

architecture.

2.What is VLIW?   What are its features in 

connection with parallelism?

3.Why multicore processors are popular 

recently?


