
1

Implementation of

DSP Algorithms

• Main frame computers

• Dedicated (application specific)

architectures

• Programmable digital signal processors

– voice band data modem

– speech codec

2

PDSP and

General-Purpose MPU

mPD7720(1980) 8086(1979) M68000(1980)

Technology 3mNMOS 3mNMOS 3mNMOS

Clock rate 4MHz 8MHz 8MHz

of Tr. 40k 29k 68k

Bus width
16bit data

23bit inst.

16bit data

16bit inst.

16bit data

16bit inst.

MAC/sec 4M 50k 100k

Power 0.9w 1.7W 1.5w

3

Recent PDSP

• Eight DSP Core, Each with
– 1.25 GHz Fixed/Floating-Point Core

• 40 GMAC/Core for Fixed Point @ 1.25 GHz

• 20 GFLOP/Core for Floating Point @ 1.25 GHz

– Memory

• 32K Byte L1P Per Core

• 32K Byte L1D Per Core

• 512K Byte Local L2 Per Core

• Multicore Shared Memory Controller (MSMC)
– 4096KB MSM SRAM Memory Shared by Eight DSP

• Network Coprocessor

• 0.9 V to 1.2 V Core Supply

• 1.8 V, 1.1 V IO Supply

4

Features of PDSP

• Support repetitive, numerically intensive tasks

• Powerful data path

• Ability to move large amounts of data to and from
memory quickly

• Special instruction set to exploit hardware efficiently

𝑦 𝑛 = ℎ0𝑥 𝑛 + ℎ1𝑥 𝑛 − 1 +⋯+ ℎ𝑁−1𝑥(𝑛 − 𝑁 + 1)
– fast multiply-accumulation

– multiple-access memory architecture

typical example

5

Data Path

• Multiplier and Accumulator

– high-speed hardware multiplier

– integrated with an adder

• ALU

– basic arithmetic and logic operation

• Shifter (to scale the data by a power of 2)

– barrel shifter

• Overflow and Saturation

– overflow can be handled either scaling down the

result or by saturation arithmetic

6

Data Bus

Address Bus

Memory Architecture

• Von Neumann memory architecture

Processor Core

Memory

7

DSP Memory Architecture

Data Bus 2

Address Bus 2

Processor Core

Memory A Memory B

Address Bus 1

Data Bus 1

Basic Harvard Architecture

8

Modified Harvard

Architecture

Data Bus 2

Address Bus 2

Processor Core

Memory A Memory B

Address Bus 1

Data Bus 1

dual-ported memory

Data Bus 3

Address Bus 3

single-ported memory

9

Memory Access

Parallel memory banks increase bandwidth

Instructions must specify several memory accesses

Instruction word gets longer

larger memory space or more memory cycles

simplification needed

10

Register-Indirect

Addressing

• special Address Generation Unit(s)

– performs one or more complex address

calculations per instruction cycle without

using the processor’s data path

• pre- or post- increment or decrement

modes
𝑛 − 1
𝑛

𝑛 + 1

decrement

increment

11

Pipelining

• A sequence of operations are broken into
smaller pieces, which are executed in parallel.

• Pipelining breaks instruction execution into
several pipelining stages and allows multiple
instructions to be overlapped in execution.

• Pipelining exploits parallelism among the
instructions in a sequence of instruction stream,
and yields a reduction in the average execution
time per instruction.

• Pipelining speeds up the computation,

but makes programming complicated

12

Time-Stationary Coding

• Programmer have more explicit control

over the pipeline stages.

• An instruction explicitly specifies several

operations such as simultaneous

operand fetch and execute operations,

to be performed in parallel.

MAC XO,YO,A X:(RO)+, XO Y:(R4)-, YO

a0=a0+p p=x*y x=*r0++ y=*r1++

13

Data-Stationary Coding

• A single instruction specifies all the operations
performed on a set of operands from memory

• but does not indicate the exact time when these
operations are executed.

• the value in the memory locations pointed by
registers r3 and r4 are fetched and multiplied,

• the value that was pointed to by register r4 is
written back to the memory location pointed to
by register r5, and

• the result of multiplication is accumulated in
register a1.

a1 = a1 + (*r5++ = *r4++)* *r3++

14

Time-Stationary and Data-

Stationary Approaches

Each has advantages and disadvantages

• Time-stationary coding

– programmers carry out part of the scheduling

• Data-stationary coding

– programmers specify the operations to be

performed, and leave the scheduling tasks to

the compiler.

– easier to read out but not as flexible as time-

stationary approach

15

Processors for Multimedia

• Frequent use of small integer operands

• Highly regular computation-intensive

operations

• Intensive I/O or memory access, data

reusability, and data locality

• Complex control operations in less

computationally intensive tasks

audio, speech, image, video, 2D & 3D graphics, etc.

16

Program

Processing

Unit

Processing

Unit

Processing

Unit

Processing

Unit

SIMD architecture

Multiprocessing

17

Program

Processing

Unit

Processing

Unit

Processing

Unit

Processing

Unit

MIMD architecture

Program Program Program

Multiprocessing (cont’d)

18

A

B

x1 x2 x3 x4

y1 y2 y3 y4

Split 64-bit ALU

Split 64-bit ALU

Subword Parallelism

19

Graphics Processing Unit

• specialized unit designed to accelerate image output

in a frame buffer intended for output to a display

• very efficient at manipulating computer graphics and

generally more effective than general-purpose CPUs

for algorithms where large blocks of data are

processed in parallel

• can be used together with a CPU to accelerate

general-purpose scientific and engineering

applications

• CPU: a few cores optimized for serial processing,

GPU: lots of smaller, more efficient cores designed

for parallel performance

• TSUBAME 2.5, TSUBAME KFC

20

Exercise 13

1.Find out the origin of the term “Harvard”

architecture.

2.What is VLIW? What are its features in

connection with parallelism?

3.Why multicore processors are popular

recently?

