Other Adaptive Algorithms

- LMS is the most popular algorithm
- What problems LMS potentially have?
 slow convergence speed
 choice of best step size

Normalized LMS

• LMS:

 $H(n+1) = H(n) + \delta X(n+1)e(n+1)$

• NLMS: $H(n + 1) = H(n) + \delta X(n + 1)e(n + 1)/\sigma_x^2$

signal power σ_x^2 can be estimated by $P_x(n) = P_0 + \frac{1}{N_0} \sum_{i=0}^{N_0} x^2(n-i)$

or by

$$P_x(n) = (1-\gamma)P_x(n-1) + \gamma x^2(n)$$

Delayed LMS

- In the implementation, it is sometimes easier to update coefficients with some delay as $H(n + 1) = H(n) + \delta X(n + 1 - d)e(n + 1 - d)$
- The delay makes the stability condition more stringent.

Motivation for Recursive Algorithm

• LMS: simple but slow.

Coefficient vector will "rattle around" the optimal rather than actually converge to it.

 Another approach: Use input data so as to ensure optimality at each step.

If this can be done, the last vector is the overall optimal.

"Recursive-in-Time" Algorithm Cost function

 $J(n) = \sum_{p=1}^{n} [y(p) - H^{T}(n-1)X(p)]^{2}$

uses all the available data up to n.

H(n) is optimized to minimize J(n)

 Some procedure by which H(n) is updated to the new optimal vector H(n+1) when new samples become available.

Simplest Update Formula

- Update R_N by $R_N(n+1) = R_N(n) + X(n+1)X^T(n+1)$
- Update r_{yx} by $r_{yx}(n+1) = r_{yx}(n) + X(n+1)y(n+1)$
- Invert $R_N(n+1)$
- Compute H(n+1) by $H(n+1) = R_N^{-1}(n+1)r_{yx}(n+1)$

Direct, but computationally wasteful. $O(N^3)$ multiplications

Matrix Inversion Lemma

Given matrices A, B, C and D satisfying $A = B + CDC^{T}$

then inverse of A is $A^{-1} = B^{-1} - B^{-1}C(C^T B^{-1}C + D^{-1})^{-1}C^T B^{-1}$

The Lemma is applied $B = R_N(n), \quad C = X(n+1), \quad D = 1$

$$R_N^{-1}(n+1) = R_N^{-1}(n) - \frac{R_N^{-1}(n)X(n+1)X^T(n+1)R_N^{-1}(n)}{1+X^T(n+1)R_N^{-1}(n)X(n+1)}$$

We never compute $R_N(n+1)$, nor do we invert it directly.

Optimal Coefficient Vector

$$\begin{split} H(n+1) &= R_N^{-1}(n+1)r_{yx}(n+1) \\ &= \left\{ R_N^{-1}(n) - \frac{R_N^{-1}(n)X(n+1)X^T(n+1)R_N^{-1}(n)}{1+X^T(n+1)R_N^{-1}(n)X(n+1)} \right\} \left\{ r_{yx}(n) + X(n+1)y(n+1) \\ &= R_N^{-1}(n)r_{yx}(n) - \frac{R_N^{-1}(n)X(n+1)X^T(n+1)R_N^{-1}(n)r_{yx}(n)}{1+X^T(n+1)R_N^{-1}(n)X(n+1)} \\ &+ R_N^{-1}(n)X(n+1)y(n+1) \\ &- \frac{y(n+1)X(n+1)R_N^{-1}(n)X(n+1)X^T(n+1)R_N^{-1}(n)}{1+X^T(n+1)R_N^{-1}(n)X(n+1)} \end{split}$$

Simplification

 $Z(n + 1) = R_N^{-1}(n)X(n + 1)$: filtered information vector $\hat{y}(n + 1) = X^T(n + 1)H(n)$: a priori output $q = X^T(n + 1)Z(n + 1)$: signal power with normalization

$$\begin{split} H(n+1) \\ &= H(n) - \frac{Z(n+1)\hat{y}(n+1)}{1+X^{T}(n+1)Z(n+1)} + Z(n+1)y(n+1) - \frac{y(n+1)Z(n+1)X^{T}(n+1)Z(n+1)}{1+X^{T}(n+1)Z(n+1)} \\ &= H(n) - \frac{Z(n+1)\hat{y}(n+1)}{1+q} + Z(n+1)y(n+1) - \frac{y(n+1)qZ(n+1)}{1+q} \\ &= H(n) - \frac{Z(n+1)\hat{y}(n+1)}{1+q} + \frac{y(n+1)Z(n+1)}{1+q} \\ &= H(n) + \frac{Z(n+1)\{y(n+1) - \hat{y}(n+1)\}}{1+q} \\ &= H(n) + \frac{e(n+1)Z(n+1)}{1+q} \end{split}$$

Recursive Least Squares algorithm

Correction Term to be Added to Update

$$\begin{split} e(n+1) &= y(n+1) - \hat{y}(n+1): \text{ a priori error} \\ Z(n+1): \text{ filtered information vector} \\ R_N^{-1}(n) \text{ acts to influence or "filter" the data vector} \\ q: \text{ a measure of the input signal power} \\ \text{ with normalization introduced by } R_N^{-1}(n) \\ 0 &\leq q \leq 1 \end{split}$$

 $O(N^2)$ multiplications

Initial Condition

The procedure assumes $R_N^{-1}(n)$ exists. Two methods;

- Acquire N input samples and $R_N^{-1}(n)$ is computed directly.
- $R_N^{-1}(0) = \gamma I_N$, γ : large positive constant inaccurate but simple

 $R_N^{-1}(n)$ is gradually corrected.

Multirate Adaptive Filters

• Sampling Frequencies of input and reference signals can be different.

Sampling rate conversion

• For colored input signals, convergence speed becomes slow.

Subband decomposition

In each band, unevenness in the spectrum is reduced.

Subband Adaptive Filters

Multi-Band Decomposition of Error

 w_i : window functions long for low frequency and short for high frequency

Frequency Domain Adaptive Filters

N-tap adaptive filter \square A set of separate 1-tap filters

Efficient FFT algorithm

Real-valued transforms such as DCT can also be used.

Exercise 10

1. Adaptive filters have coefficient update equations given by

[new coefficient vector] =[old coefficient vector]

+ [step size] × [input data vector] × [innovation signal].

- a. What will happen if the step size parameter is too large?
- b.What will happen if the step size parameter is too small?
- c. If the step size parameter can also be varied, what will be a suitable strategy to change the parameter?
- 2. Autocorrelation matrix is defined as

$$R(n) = \sum_{p=n-L+1}^{n} X(p) X^{T}(p)$$

where $X^{T}(n) = [x(n) x(n-1) \cdots x(n-N+1)].$

- a. Show the expression for R_{ij} , ij-th entry of R(n), in terms of x(n),
- b. State the physical meanings of R_{ii} and R_{ij} .
- c. What specific feature does R(n) have in general and in the case where x(n) is stationary?
- 3. A measurement gives the signal autocorrelation values r(0) = 5.0, r(1) = 3.0, r(2) = 0.4. Calculate the two coefficients of the second-order linear predictor and the prediction error power. Give the corresponding signal power spectrum.