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Other Adaptive Algorithms

• LMS is the most popular algorithm

• What problems LMS potentially have?

– slow convergence speed

– choice of best step size
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Normalized LMS

• LMS:

𝐻 𝑛 + 1 = 𝐻 𝑛 + 𝛿𝑋 𝑛 + 1 𝑒(𝑛 + 1)

• NLMS: 𝐻 𝑛 + 1 = 𝐻 𝑛 + 𝛿𝑋 𝑛 + 1 𝑒 𝑛 + 1 /𝜎𝑥
2

signal power sx
2 can be estimated by

𝑃𝑥 𝑛 = 𝑃0 +
1

𝑁0
 

𝑖=0

𝑁0

𝑥2(𝑛 − 𝑖)

or by

𝑃𝑥 𝑛 = 1 − 𝛾 𝑃𝑥 𝑛 − 1 + 𝛾𝑥2(𝑛)
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Delayed LMS

• In the implementation, it is sometimes easier 

to update coefficients with some delay as

𝐻 𝑛 + 1 = 𝐻 𝑛 + 𝛿𝑋 𝑛 + 1 − 𝑑 𝑒(𝑛 + 1 − 𝑑)

• The delay makes the stability condition more 

stringent.
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Motivation for

Recursive Algorithm

• LMS: simple but slow.

Coefficient vector will “rattle around” the 

optimal rather than actually converge to it.

• Another approach: Use input data so as 

to ensure optimality at each step.

If this can be done, the last vector is the 

overall optimal. 
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“Recursive-in-Time” 

Algorithm

Cost function

𝐽 𝑛 =  

𝑝=1

𝑛

𝑦 𝑝 − 𝐻𝑇 𝑛 − 1 𝑋(𝑝) 2

uses all the available data up to 𝑛.

𝐻(𝑛) is optimized to minimize 𝐽(𝑛)

• Some procedure by which H(n) is updated 

to the new optimal vector H(n+1) when 

new samples become available.



6

Simplest Update Formula

• Update 𝑅𝑁 by 𝑅𝑁 𝑛 + 1 = 𝑅𝑁 𝑛 + 𝑋(𝑛 + 1)𝑋𝑇(𝑛 + 1)

• Update 𝑟𝑦𝑥 by 𝑟𝑦𝑥 𝑛 + 1 = 𝑟𝑦𝑥 𝑛 + 𝑋 𝑛 + 1 𝑦(𝑛 + 1)

• Invert 𝑅𝑁(𝑛 + 1)

• Compute 𝐻 𝑛 + 1 by 

Direct, but computationally wasteful.

O(N3)   multiplications

     111 1   nrnRnH yxN
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Matrix Inversion Lemma

Given matrices A,B,C and D satisfying

𝐴 = 𝐵 + 𝐶𝐷𝐶𝑇

then inverse of A is

𝐴−1 = 𝐵−1 − 𝐵−1𝐶 𝐶𝑇𝐵−1𝐶 + 𝐷−1 −1𝐶𝑇𝐵−1
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The Lemma is applied

We never compute RN(n+1) ,

nor do we invert it directly. 

𝐵 = 𝑅𝑁 𝑛 , 𝐶 = 𝑋 𝑛 + 1 , 𝐷 = 1

𝑅𝑁
−1 𝑛 + 1

= 𝑅𝑁
−1 𝑛 −

𝑅𝑁
−1 𝑛 𝑋(𝑛 + 1)𝑋𝑇(𝑛 + 1)𝑅𝑁

−1 𝑛

1 + 𝑋𝑇(𝑛 + 1)𝑅𝑁
−1 𝑛 𝑋(𝑛 + 1)
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Optimal Coefficient Vector

𝐻 𝑛 + 1 = 𝑅𝑁
−1 𝑛 + 1 𝑟𝑦𝑥 𝑛 + 1

= 𝑅𝑁
−1 𝑛 −

𝑅𝑁
−1 𝑛 𝑋 𝑛 + 1 𝑋𝑇 𝑛 + 1 𝑅𝑁

−1 𝑛

1 + 𝑋𝑇 𝑛 + 1 𝑅𝑁
−1 𝑛 𝑋 𝑛 + 1

𝑟𝑦𝑥 𝑛 + 𝑋 𝑛 + 1 𝑦 𝑛 + 1

= 𝑅𝑁
−1 𝑛 𝑟𝑦𝑥 𝑛 −

𝑅𝑁
−1 𝑛 𝑋 𝑛 + 1 𝑋𝑇 𝑛 + 1 𝑅𝑁

−1 𝑛 𝑟𝑦𝑥 𝑛

1 + 𝑋𝑇 𝑛 + 1 𝑅𝑁
−1 𝑛 𝑋 𝑛 + 1

+ 𝑅𝑁
−1 𝑛 𝑋 𝑛 + 1 𝑦 𝑛 + 1

−
𝑦 𝑛 + 1 𝑋 𝑛 + 1 𝑅𝑁

−1 𝑛 𝑋 𝑛 + 1 𝑋𝑇 𝑛 + 1 𝑅𝑁
−1 𝑛

1 + 𝑋𝑇 𝑛 + 1 𝑅𝑁
−1 𝑛 𝑋 𝑛 + 1
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Simplification

Recursive Least Squares algorithm

𝑍 𝑛 + 1 = 𝑅𝑁
−1 𝑛 𝑋 𝑛 + 1 : filtered information vector

 𝑦 𝑛 + 1 = 𝑋𝑇 𝑛 + 1 𝐻 𝑛 : a priori output

𝑞 = 𝑋𝑇 𝑛 + 1 𝑍 𝑛 + 1 : signal power with normalization

𝐻 𝑛 + 1

= 𝐻 𝑛 −
𝑍 𝑛 + 1  𝑦 𝑛 + 1

1 + 𝑋𝑇 𝑛 + 1 𝑍 𝑛 + 1
+ 𝑍 𝑛 + 1 𝑦 𝑛 + 1 −

𝑦 𝑛 + 1 𝑍 𝑛 + 1 𝑋𝑇 𝑛 + 1 𝑍 𝑛 + 1

1 + 𝑋𝑇 𝑛 + 1 𝑍 𝑛 + 1

= 𝐻 𝑛 −
𝑍 𝑛 + 1  𝑦 𝑛 + 1

1 + 𝑞
+ 𝑍 𝑛 + 1 𝑦 𝑛 + 1 −

𝑦 𝑛 + 1 𝑞𝑍 𝑛 + 1

1 + 𝑞

= 𝐻 𝑛 −
𝑍 𝑛 + 1  𝑦 𝑛 + 1

1 + 𝑞
+

𝑦 𝑛 + 1 𝑍 𝑛 + 1

1 + 𝑞

= 𝐻 𝑛 +
𝑍 𝑛 + 1 𝑦 𝑛 + 1 −  𝑦 𝑛 + 1

1 + 𝑞

= 𝐻 𝑛 +
𝑒 𝑛 + 1 𝑍(𝑛 + 1)

1 + 𝑞
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Correction Term

to be Added to Update

𝑒 𝑛 + 1 = 𝑦 𝑛 + 1 −  𝑦 𝑛 + 1 : a priori error

𝑍 𝑛 + 1 : filtered information vector

𝑅𝑁
−1 𝑛 acts to influence or “filter” the data vector

𝑞: a measure of the input signal power

with normalization introduced by 𝑅𝑁
−1 𝑛

0 ≤ 𝑞 ≤ 1

𝑂(𝑁2) multiplications
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Initial Condition

The procedure assumes 𝑅𝑁
−1(𝑛) exists.

Two methods;

• Acquire N input samples and 𝑅𝑁
−1(𝑛) is 

computed directly.

• 𝑅𝑁
−1 0 = 𝛾𝐼𝑁 , 𝛾: large positive constant

inaccurate but simple

𝑅𝑁
−1(𝑛) is gradually corrected.
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Multirate Adaptive Filters

•Sampling Frequencies of input and reference 

signals can be different.

Sampling rate conversion

•For colored input signals, convergence speed 

becomes slow.

Subband decomposition

In each band, unevenness in the spectrum is reduced.
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Subband Adaptive Filters

𝑥(𝑛)
H0(z) ↓ 𝑀

HM-1(z) ↓ 𝑀

ADF0

ADFM-1

H0(z)

HM-1(z)

↓ 𝑀

↓ 𝑀

-

-

↑ 𝑀 ↑ 𝑀

F0(z) FM-1(z)

. . .

. . .

+

𝑦(𝑛)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

 𝑦 𝑛
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Multi-Band Decomposition

of Error

H0(z) SQ

HM-1(z) SQ

𝑤0

𝑤𝑀−1

-ADF

+

𝑤𝑖 : window functions

long for low frequency and

short for high frequency

.

.

.

.

.

.

.

.

.

 𝑦 𝑛 𝑦(𝑛)
𝑥(𝑛)
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Frequency Domain

Adaptive Filters

N-point

DFT

N-point

DFT

N-point IDFT

-

-

filter output  𝑦 𝑛

.

.

.

.

.

.

.   .   .

𝑥(𝑛) 𝑦(𝑛)
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Frequency Domain

Adaptive Filters

N-tap adaptive filter A set of separate 1-tap filters

Efficient FFT algorithm

Real-valued transforms such as DCT can also be used.
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Exercise 10
1. Adaptive filters have coefficient update equations given by

[new coefficient vector] =[old coefficient vector]

+ [step size] ×[input data vector] ×[innovation signal].

a.What will happen if the step size parameter is too large?

b.What will happen if the step size parameter is too small?

c. If the step size parameter can also be varied, what will be a suitable 
strategy to change the parameter?

2. Autocorrelation matrix is defined as

𝑅 𝑛 =  

𝑝=𝑛−𝐿+1

𝑛

𝑋 𝑝 𝑋𝑇(𝑝)

where 𝑋𝑇 𝑛 = 𝑥 𝑛 𝑥 𝑛 − 1 ⋯𝑥(𝑛 − 𝑁 + 1) .

a.Show the expression for 𝑅𝑖𝑗, 𝑖𝑗-th entry of 𝑅(𝑛), in terms of 𝑥(𝑛), 

b.State the physical meanings of 𝑅𝑖𝑖 and 𝑅𝑖𝑗.

c.What specific feature does 𝑅(𝑛) have in general and in the case 
where 𝑥(𝑛) is stationary?

3. A measurement gives the signal autocorrelation values 𝑟 0 = 5.0, 𝑟 1 =
3.0, 𝑟 2 = 0.4.  Calculate the two coefficients of the second-order linear 
predictor and the prediction error power.  Give the corresponding signal 
power spectrum.


