Advanced Signal Processing

Akinori Nishihara
Professor
CRADLE
Tokyo Institute of Technology
aki@cradle.

Why do we study Signal Processing?

- Important elemental technology
- especially in this digital era

Lecture Schedule

Apr. 7 Overview
Apr. 14 Filter design
Apr. 21 Finite wordlength
Apr. 28 Multirate systems
May 7 Polyphase rep.
May 12 Filter banks
May 19 M-channel Filter banks
May 26 Adaptive filters
June 2 Exercise

June 9 Gradient algorithm June 16 Recursive algorithm
June 23 DSP systems
June 30 Pipelining and parallel processing
July 7 Implementation of DSP algorithms
July 14 Exercise
July 28? Final Exam

Tokyo Tech OCW Hit

http://www.ocw.titech.ac.jp/

Graduate School of Science and Engineering
Department of Communications and Computer Engineering

No fixed office hour but For Questions and Comments
 contact
 aki@cradle.
 Room 823, Ookayama West 9W

ELITE site

Registration information is collected today Flipped Classroom: You have to study in advance

Reference Books

- Alan V. Oppenheim \& Ronald W. Schafer Discrete-Time Signal Processing, Prentice Hall, 1989
- Andreas Antoniou

Digital Filters: Analysis and Design, McGraw-Hill, 1979

- P. P. Vaidynathan

Multirate Systems and Filter Banks, Prentice Hall, 1993

- Maurice G. Bellanger

Adaptive Digital Filters and Signal Analysis, Dekker, 1987

- Keshab K. Parhi

VLSI Digital Signal Processing Systems, Wiley, 1999

Signal Processing

Signals in real world : Analog

Digital processing has advantage in

-VLSI implementation
\checkmark low component tolerance
\checkmark robust to environmental change -flexibility
\checkmark processor architecture and
\diamond software control

Digital Processing of Analog Signals

Discrete-Time signal

$x(n), \quad n=\cdots,-2,-1,0,1,2, \cdots$
digital : quantized amplitude
will be considered later

Unit Pulse Signal (Impulse Signal)

$$
\delta(n)=\left\{\begin{array}{cc}
1 & n=0 \\
0 & \text { otherwise }
\end{array}\right.
$$

shifted (delayed) unit pulse

General Signal

$$
\begin{aligned}
& x(n)=\sum_{k=-\infty}^{\infty} x(k) \delta(n-k) \\
& x(0) \delta(n) \\
& \cdots{ }_{0} \ldots \\
& \cdots 1_{1}^{1_{n}^{x(1) \delta(n-1)}}{ }_{n}
\end{aligned}
$$

Discrete-Time System

Output $y(n)$ is a $\left\{\begin{array}{l}\text { mapping } \\ \text { transform }\end{array}\right\}$ of input

$$
y(n)=T[x(n)]
$$

Linearity

When $y_{i}(n)=T\left[x_{i}(n)\right]$
The system is linear if
$\sum_{i} a_{i} y_{i}(n)=T\left[\sum_{i} a_{i} x_{i}(n)\right]$
$x_{1}(n)-a_{1}$
$x_{2}(n) a_{2}$
II

Shift-Invariance

When $y(n)=T[x(n)]$
The system is shift-invariant if

$$
y(n-k)=T[x(n-k)] \quad \text { for arbitrary } k
$$

\longrightarrow shifted by k

Impulse Response

Response to General Input

$$
\begin{aligned}
& y(n)=T[x(n)] \\
& =T\left[\sum_{k} x(k) \delta(n-k)\right] \\
& =\sum_{k} x(k) T[\delta(n-k)] \\
& =\sum_{k} x(k) h(n-k) \\
& \text { linearity } \\
& \text { shift-invariance }
\end{aligned}
$$

Convolution

$$
\begin{aligned}
y(n) & =\sum_{k} x(k) h(n-k)=x(n) * h(n) \\
& =\sum_{k}^{k} h(k) x(n-k)=h(n) * x(n)
\end{aligned}
$$

$$
a(n) *(b(n) * c(n))=(a(n) * b(n)) * c(n)
$$

BIBO Stability

Bounded Input Bounded Output Stability

$|x(n)| \leq M<\infty \quad$ bounded input

$$
\begin{aligned}
|y(n)| & =\left|\sum_{k} h(k) x(n-k)\right| \\
& \leq \sum_{k}^{k}|h(k)||x(n-k)| \\
& \leq \sum_{k}|h(k)| M<\infty \quad \text { bounded output } \\
& \sum_{k}|h(k)|<\infty \quad \text { BIBO stability }
\end{aligned}
$$

Causality

$$
\begin{array}{lll}
\text { causal } & h(n)=0 & n<0 \\
\text { ticausal } & h(n)=0 & n>0
\end{array}
$$

if n is a time index
causality \Longleftrightarrow physical realizability

z-Transform

$$
X(z)=\sum_{n=-\infty}^{\infty} x(n) z^{-n}
$$

convergence depends on

$\{$ shape of sequence $x(n)$
$\{$ value of complex variable z

Properties of z-Transform

Linearity $a_{1} X_{1}(z)+a_{2} X_{2}(z)=\sum_{n=-\infty}^{\infty}\left(a_{1} x_{1}(n)+a_{2} x_{2}(n)\right) z^{-n}$

Shift

$$
X(z) z^{-k}=\sum_{n=-\infty}^{\infty} x(n-k) z^{-n}
$$

Inverse z-Transform

$$
x(n)=\frac{1}{2 \pi j} \oint X(z) z^{n-1} d z
$$

Linear, Shift-Invariant System in z-Domain

$$
\begin{aligned}
Y(z) & =\sum_{n=-\infty}^{\infty} y(n) z^{-n} \\
& =\sum_{n=-\infty}^{X(z)} \sum_{k=-\infty}^{\infty} x(k) h(n-k) z^{-n} \\
& =H(z) X(z)
\end{aligned}
$$

$H(z)$: Transfer Function
z-transform of Impulse Response

Impulse Input

Complex Sinusoid Input

Input: $x(n)=e^{j \omega n}$
Output : $y(n)=\sum_{k=-\infty}^{\infty} h(k) x(n-k)$
$=\sum_{k=-\infty}^{\infty} h(k) e^{j \omega(n-k)}$
$=\sum_{k=-\infty}^{\infty} h(k) e^{-j \omega k} e^{j \omega n}$
$=\underline{H\left(e^{j \omega}\right)} e^{j \omega n}$
complex sinusiod with the same frequency

Frequency Response

$$
\begin{aligned}
H\left(e^{j \omega}\right) & =\sum_{k=-\infty}^{\infty} h(n) e^{-j \omega n} \\
& =\left.H(z)\right|_{z=e^{j \omega}} \quad 2 \pi \text { periodic }
\end{aligned}
$$

$\left|\boldsymbol{H}\left(\boldsymbol{e}^{j \omega}\right)\right|$: Amplitude Response $\arg H\left(e^{j \omega}\right)$: Phase Response

Example 1

$$
\begin{aligned}
& y(n)=\frac{1}{2}(x(n)+x(n-1)) \\
& h(n)= \begin{cases}\frac{1}{2} & n=0,1 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

$$
H(z)=\frac{1}{2}\left(1+z^{-1}\right)
$$

Frequency Response of Ex. 1

amplitude

phase

Example 2

$$
\begin{aligned}
& y(n)=x(n)+\frac{1}{2} y(n-1) \\
& h(n)= \begin{cases}0 & n<0 \\
\left(\frac{1}{2}\right)^{n} & n \geq 0\end{cases}
\end{aligned}
$$

$$
H(z)=\frac{1}{1-\frac{1}{2} z^{-1}}
$$

Frequency Response of Ex. 2

amplitude

phase

FIR/IIR,
 recursive/non recursive

\{ FIR : Finite Impulse Response IIR : Infinite Impulse Response
$\{$ non recursive : no feedback loops inside recursive : feedback loop(s) exist

Transfer Function

$$
H(z)=\frac{a_{0}+a_{1} z^{-1}+\cdots+a_{N} z^{-N}}{1+b_{1} z^{-1}+\cdots+b_{N} z^{-N}} \quad \begin{aligned}
& N-\text { th order rational } \\
& \text { function in } z^{-1}
\end{aligned}
$$

$$
\frac{Y(z)}{X(z)}=\frac{a_{0}+a_{1} z^{-1}+\cdots+a_{N} z^{-N}}{1+b_{1} z^{-1}+\cdots+b_{N} z^{-N}}
$$

$\left(1+b_{1} z^{-1}+\cdots+b_{N} z^{-N}\right) Y(z)=\left(a_{0}+a_{1} z^{-1}+\cdots+a_{N} z^{-N}\right) X(z)$

Inverse z -Transform

$$
y(n)+b_{1} y(n-1)+\cdots+b_{N} y(n-N)=a_{0} x(n)+a_{1} x(n-1)+\cdots+a_{N} x(n-N)
$$

Standard Difference Equation

Realization of Standard Difference Equation

$$
y(n)=a_{0} x(n)+a_{1} x(n-1)+\cdots+a_{N} x(n-N)-b_{1} y(n-1)-\cdots-b_{N} y(n-N)
$$

$2 N$ delays
Direct Form
$2 N+1$ multiplications
$2 N$ additions

Equivalent Transformation

N delays
$2 N+1$ multiplications
$2 N$ additions

Another Equivalent Transformation

change in Order of subblocks

Flow Reversal ---- yet another equivalence

Exercise 1

1. Prove that the z-transform of the convolution of two sequences is the product of the respective z transforms.
2. Obtain the transfer function for an N-tap moving average filter given by

$$
y(n)=\frac{1}{N} \sum_{k=0}^{N-1} x(n-k)
$$

and calculate its magnitude response.
3. Prove that the system of Example 2 is BIBO stable.
4. Show an example of recursive but FIR systems.

