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Why do we study

Signal Processing?

• Important elemental technology

• especially in this digital era
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Lecture Schedule

Apr.7 Overview

Apr.14 Filter design

Apr.21 Finite wordlength

Apr. 28 Multirate

systems

May 7 Polyphase rep.

May 12 Filter banks

May 19 M-channel Filter 

banks

May 26 Adaptive filters

June 2 Exercise

June 9 Gradient algorithm

June 16 Recursive 

algorithm

June 23 DSP systems

June 30 Pipelining and 

parallel processing

July 7 Implementation of 

DSP algorithms

July 14 Exercise

July 28? Final Exam
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Tokyo Tech OCW

contact

aki@cradle.

Room 823, Ookayama West 9W

No fixed office hour but

For Questions and Comments

http://www.ocw.titech.ac.jp/

Graduate School of Science and Engineering

Department of Communications and Computer Engineering



ELITE site
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Registration information is collected today

Flipped Classroom: You have to study in advance
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Reference Books

• Alan V. Oppenheim & Ronald W. Schafer

Discrete-Time Signal Processing, Prentice Hall, 

1989

• Andreas Antoniou

Digital Filters: Analysis and Design, McGraw-Hill, 

1979

• P. P. Vaidynathan

Multirate Systems and Filter Banks, Prentice Hall, 

1993

• Maurice G. Bellanger

Adaptive Digital Filters and Signal Analysis, 

Dekker, 1987

• Keshab K. Parhi

VLSI Digital Signal Processing Systems, Wiley, 

1999



7

Signals in real world : Analog

Digital processing has advantage in

•VLSI implementation

low component tolerance

robust to environmental change

•flexibility

processor architecture and 

software control

Signal Processing
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A-D D-A LPF+

z-1

sampling

quantization

digital signal processing

101100 110101
t n tn

Digital Processing

of Analog Signals
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digital : quantized amplitude

will be considered later

Discrete-Time signal

𝑥 𝑛 , 𝑛 = ⋯ , −2, −1, 0, 1, 2, ⋯

𝑛−1 0 1 2 ⋯
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(Impulse Signal)

shifted (delayed) unit pulse

1

1

Unit Pulse Signal

0 𝑛

𝛿 𝑛 =  
1 𝑛 = 0
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

0 𝑘 𝑛

𝛿 𝑛 − 𝑘
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General Signal

𝑥 𝑛 =  

𝑘=−∞

∞

𝑥 𝑘 𝛿(𝑛 − 𝑘)

0 𝑛

1 𝑛

2 𝑛

𝑥 0 𝛿(𝑛)

𝑥 1 𝛿(𝑛 − 1)

𝑥 2 𝛿(𝑛 − 2)
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T
input output

Output 𝑦(𝑛) is a 
mapping

transform
of input

Discrete-Time System

𝑥(𝑛) 𝑦(𝑛)

𝑦 𝑛 = 𝑇 𝑥(𝑛)
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When 𝑦𝑖 𝑛 = 𝑇 𝑥𝑖(𝑛)

The system is linear if

 

𝑖

𝑎𝑖 𝑦𝑖 𝑛 = 𝑇  

𝑖

𝑎𝑖 𝑥𝑖(𝑛)

+ T

+
T

T

=

Linearity

𝑥1 𝑛

𝑥2 𝑛

𝑥1 𝑛

𝑥2 𝑛
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When 𝑦 𝑛 = 𝑇 𝑥(𝑛)

The system is shift-invariant if

𝑦 𝑛 − 𝑘 = 𝑇 𝑥(𝑛 − 𝑘) for arbitrary k

00 T

kk T

shifted by k

Shift-Invariance
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n
0

T

h(n)

n

Impulse Response

𝛿(𝑛)
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Response to General Input

nn T

linearity

shift-invariance

convolution

𝑦 𝑛 = 𝑇 𝑥(𝑛)

= 𝑇  

𝑘

𝑥 𝑘 𝛿(𝑛 − 𝑘)

=  

𝑘

𝑥(𝑘) 𝑇 𝛿(𝑛 − 𝑘)

=  

𝑘

𝑥 𝑘 ℎ(𝑛 − 𝑘)

𝑥(𝑛) 𝑦(𝑛)
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Convolution

𝑦 𝑛 =  

𝑘

𝑥 𝑘 ℎ 𝑛 − 𝑘 = 𝑥 𝑛 ∗ ℎ 𝑛

=  𝑘 ℎ 𝑘 𝑥 𝑛 − 𝑘 = ℎ 𝑛 ∗ 𝑥 𝑛

𝑎 𝑛 ∗ 𝑏 𝑛 ∗ 𝑐 𝑛 = 𝑎 𝑛 ∗ 𝑏 𝑛 ∗ 𝑐(𝑛)
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BIBO Stability

Bounded Input Bounded Output Stability

bounded output

BIBO stability 

𝑘

ℎ 𝑘 < ∞

|𝑥 𝑛 | ≤ 𝑀 < ∞ bounded input

|𝑦 𝑛 | =  

𝑘

ℎ 𝑘 𝑥(𝑛 − 𝑘)

≤  

𝑘

ℎ 𝑘 |𝑥(𝑛 − 𝑘) |

≤  

𝑘

ℎ 𝑘 𝑀 < ∞
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Causality

causal             ℎ 𝑛 = 0 𝑛 < 0

anticausal ℎ 𝑛 = 0 𝑛 > 0

if n is a time index

causality             physical realizability
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z-Transform

convergence depends on

shape of sequence 𝑥(𝑛)
value of complex variable 𝑧

𝑋 𝑧 =  

𝑛=−∞

∞

𝑥 𝑛 𝑧−𝑛
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Properties of z-Transform

Linearity   𝑎1𝑋1 𝑧 + 𝑎2𝑋2 𝑧 =  
𝑛=−∞

∞
𝑎1𝑥1 𝑛 + 𝑎2𝑥2(𝑛) 𝑧−𝑛

Shift         𝑋 𝑧 𝑧−𝑘 =  𝑛=−∞
∞ 𝑥 𝑛 − 𝑘 𝑧−𝑛
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Inverse z-Transform

𝑥 𝑛 =
1

2𝜋𝑗
 𝑋 𝑧 𝑧𝑛−1𝑑𝑧
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Linear, Shift-Invariant 

System in z-Domain

T

H(z) : Transfer Function

z-transform of Impulse Response

𝑋 𝑧 𝑌(𝑧)

𝑌 𝑧 =  

𝑛=−∞

∞

𝑦 𝑛 𝑧−𝑛

=  

𝑛=−∞

∞

 

𝑘=−∞

∞

𝑥 𝑘 ℎ 𝑛 − 𝑘 𝑧−𝑛

= 𝐻 𝑧 𝑋(𝑧)
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Impulse Input

0
H(z)n n

𝑋 𝑧 = 1 𝑌 𝑧 = 𝐻(𝑧)
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Complex Sinusoid Input

Input :   𝑥 𝑛 = 𝑒𝑗𝜔𝑛

Output :   

complex sinusiod with the same frequency

𝑦 𝑛 =  

𝑘=−∞

∞

ℎ 𝑘 𝑥 𝑛 − 𝑘

=  

𝑘=−∞

∞

ℎ 𝑘 𝑒𝑗𝜔 𝑛−𝑘

=  

𝑘=−∞

∞

ℎ 𝑘 𝑒−𝑗𝜔𝑘𝑒𝑗𝜔𝑛

= 𝐻(𝑒𝑗𝜔)𝑒𝑗𝜔𝑛
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Frequency Response

𝑯(𝒆𝒋𝝎) : Amplitude Response

arg 𝐻(𝒆𝒋𝝎) : Phase Response

𝐻 𝑒𝑗𝜔 =  

𝑘=−∞

∞

ℎ 𝑛 𝑒−𝑗𝜔𝑛

=  𝐻 𝑧
𝑧=𝑒𝑗𝜔

2𝜋 periodic
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Example 1

z-1 +

𝑥 𝑛 𝑥 𝑛 − 1 𝑦(𝑛)

𝑦 𝑛 =
1

2
𝑥 𝑛 + 𝑥(𝑛 − 1)

ℎ 𝑛 =  
1

2
𝑛 = 0, 1

0 otherwise

𝐻 𝑧 =
1

2
1 + 𝑧−1
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Frequency Response of Ex.1

amplitude phase

0 𝜋 2𝜋 0 𝜋 2𝜋

01

−𝜋
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Example 2

+
z-1

𝑥 𝑛 𝑦(𝑛)

𝑦(𝑛 − 1)

𝑦 𝑛 = 𝑥 𝑛 +
1

2
𝑦 𝑛 − 1

ℎ 𝑛 =  

0 𝑛 < 0

1

2

𝑛

𝑛 ≥ 0

𝐻 𝑧 =
1

1 −
1
2 𝑧−1
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Frequency Response of Ex.2

amplitude phase

0 𝜋 2𝜋 0 𝜋 2𝜋

2

𝜋

2

0

−
𝜋

2
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FIR/IIR,

recursive/non recursive

FIR : Finite Impulse Response

IIR : Infinite Impulse Response

non recursive : no feedback loops inside

recursive : feedback loop(s) exist
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Transfer Function

Inverse z-Transform

Standard Difference Equation

N –th order rational 
function in z -1𝐻 𝑧 =

𝑎0 + 𝑎1𝑧−1 + ⋯ + 𝑎𝑁𝑧−𝑁

1 + 𝑏1𝑧−1 + ⋯ + 𝑏𝑁𝑧−𝑁

𝑌(𝑧)

𝑋(𝑧)
=

𝑎0 + 𝑎1𝑧−1 + ⋯ + 𝑎𝑁𝑧−𝑁

1 + 𝑏1𝑧−1 + ⋯ + 𝑏𝑁𝑧−𝑁

1 + 𝑏1𝑧−1 + ⋯ + 𝑏𝑁𝑧−𝑁 𝑌 𝑧 = 𝑎0 + 𝑎1𝑧−1 + ⋯ + 𝑎𝑁𝑧−𝑁 𝑋(𝑧)

𝑦 𝑛 + 𝑏1𝑦 𝑛 − 1 + ⋯ + 𝑏𝑁𝑦 𝑛 − 𝑁 = 𝑎0𝑥(𝑛) + 𝑎1𝑥(𝑛 − 1) + ⋯ + 𝑎𝑁𝑥(𝑛 − 𝑁)
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Realization of Standard 

Difference Equation

z-1

++

z-1

z-1

z-1

Direct Form

2N delays

2N+1  multiplications

2N   additions

𝑦 𝑛 = 𝑎0𝑥 𝑛 + 𝑎1𝑥 𝑛 − 1 + ⋯ + 𝑎𝑁𝑥 𝑛 − 𝑁 − 𝑏1𝑦 𝑛 − 1 − ⋯ − 𝑏𝑁𝑦 𝑛 − 𝑁

𝑥 𝑛 𝑦(𝑛)



34

Equivalent Transformation

z-1

+

z-1

z-1

z-1

N delays

2N+1  multiplications

2N   additions

𝑥 𝑛 𝑦(𝑛)

z-1z-1

+

+

+

z-1

z-1

z-1
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Another Equivalent 

Transformation

change in Order of subblocks

a0

a1

aN

-b1 

-bN

+ +

z-1

z-1

z-1

z-1

+ +

z-1

z-1

N delays

2N+1  multiplications

2N   additions

Flow Reversal ---- yet another equivalence

𝑥 𝑛 𝑦(𝑛)
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Exercise 1

1. Prove that the z-transform of the convolution of 

two sequences is the product of the respective z-

transforms.

2. Obtain the transfer function for an N-tap moving 

average filter given by

𝑦 𝑛 =
1

𝑁
 𝑘=0

𝑁−1 𝑥(𝑛 − 𝑘)

and calculate its magnitude response.

3. Prove that the system of Example 2 is BIBO 

stable.

4. Show an example of recursive but FIR systems.


