Advanced Signal Processing

Akinori Nishihara Professor CRADLE Tokyo Institute of Technology *aki@cradle.*

1

Why do we study Signal Processing?

- Important elemental technology
- especially in this digital era

Lecture Schedule

- **Apr.7 Overview**
- **Apr.14 Filter design**
- **Apr.21 Finite wordlength**
- Apr. 28 Multirate systems
- May 7 Polyphase rep.
- **May 12 Filter banks**
- May 19 M-channel Filter banks
- **May 26 Adaptive filters**
- **June 2 Exercise**

June 9 Gradient algorithm June 16 Recursive algorithm June 23 DSP systems June 30 Pipelining and parallel processing **July 7 Implementation of DSP** algorithms **July 14 Exercise July 28? Final Exam**

http://www.ocw.titech.ac.jp/

Graduate School of Science and Engineering Department of Communications and Computer Engineering

No fixed office hour but For Questions and Comments contact *aki@cradle.* Room 823, Ookayama West 9W

ELITE site

Registration information is collected today Flipped Classroom: You have to study in advance

Reference Books

- Alan V. Oppenheim & Ronald W. Schafer
 Discrete-Time Signal Processing, Prentice Hall, 1989
- Andreas Antoniou
 Digital Filters: Analysis and Design, McGraw-Hill, 1979
- P. P. Vaidynathan Multirate Systems and Filter Banks, Prentice Hall, 1993
- Maurice G. Bellanger
 Adaptive Digital Filters and Signal Analysis, Dekker, 1987
- Keshab K. Parhi VLSI Digital Signal Processing Systems, Wiley, 1999

Signal Processing

Signals in real world : Analog

Digital processing has advantage in

VLSI implementation

 $\diamond low$ component tolerance

robust to environmental changeflexibility

Discrete-Time signal

$$\xrightarrow{1}_{-1 \ 0 \ 1 \ 2 \ \cdots} \xrightarrow{n} n$$

$$x(n)$$
, $n = \cdots, -2, -1, 0, 1, 2, \cdots$

digital : quantized amplitude will be considered later

Unit Pulse Signal (Impulse Signal) $\delta(n) = \begin{cases} 1 & n = 0 \\ 0 & otherwise \end{cases}$ \cap п shifted (delayed) unit pulse $\delta(n-k)$ k 0 n

General Signal

Discrete-Time System

Output y(n) is a $\begin{cases} mapping \\ transform \end{cases}$ of input y(n) = T[x(n)]

Linearity

When $y_i(n) = T[x_i(n)]$ The system is <u>linear</u> if

Shift-Invariance

When y(n) = T[x(n)]

The system is **shift-invariant** if

$$y(n-k) = T[x(n-k)]$$
 for arbitrary k

Impulse Response

Response to General Input

$$y(n) = T[x(n)]$$

= $T\left[\sum_{k} x(k)\delta(n-k)\right]$
= $\sum_{k} x(k)T[\delta(n-k)]$
= $\sum_{k} x(k)h(n-k)$
= $\sum_{k} x(k)h(n-k)$
convolution

Convolution

$$y(n) = \sum_{k} x(k)h(n-k) = x(n) * h(n)$$
$$= \sum_{k} h(k)x(n-k) = h(n) * x(n)$$

a(n) * (b(n) * c(n)) = (a(n) * b(n)) * c(n)

BIBO Stability

Bounded Input Bounded Output Stability

 $|x(n)| \leq M < \infty$ bounded input $|y(n)| = \left|\sum_{i} h(k)x(n-k)\right|$ $\leq \sum |h(k)| |x(n-k)|$ $\leq \sum |h(k)| M < \infty$ bounded output $\sum_{k} |h(k)| < \infty$ BIBO stability

Causality

causal h(n) = 0 n < 0anticausal h(n) = 0 n > 0

if *n* is a time index

causality physical realizability

z-Transform

$$X(z) = \sum_{n=-\infty}^{\infty} x(n) z^{-n}$$

convergence depends on

 $\begin{cases} \text{shape of sequence } x(n) \\ \text{value of complex variable } z \end{cases}$

Properties of z-Transform

Linearity $a_1X_1(z) + a_2X_2(z) = \sum_{n=-\infty}^{\infty} (a_1x_1(n) + a_2x_2(n))z^{-n}$

Shift
$$X(z)z^{-k} = \sum_{n=-\infty}^{\infty} x(n-k)z^{-n}$$

Inverse *z*-Transform

 $x(n) = \frac{1}{2\pi i} \oint X(z) z^{n-1} dz$

Linear, Shift-Invariant System in *z*-Domain

H(*z*) : Transfer Function *z*-transform of Impulse Response

Impulse Input

Complex Sinusoid Input

Input:
$$x(n) = e^{j\omega n}$$

Output: $y(n) = \sum_{\substack{k=-\infty \\ \infty}}^{\infty} h(k)x(n-k)$
 $= \sum_{\substack{k=-\infty \\ \infty}}^{\infty} h(k)e^{j\omega(n-k)}$
 $= \sum_{\substack{k=-\infty \\ \infty}}^{\infty} h(k)e^{-j\omega k}e^{j\omega n}$

complex sinusiod with the same frequency

Frequency Response

$$H(e^{j\omega}) = \sum_{k=-\infty}^{\infty} h(n)e^{-j\omega n}$$
$$= H(z)\Big|_{z=e^{j\omega}} 2\pi \text{ periodic}$$

 $|H(e^{j\omega})|$: Amplitude Response arg $H(e^{j\omega})$: Phase Response

Example 1

$$y(n) = \frac{1}{2}(x(n) + x(n-1))$$
$$h(n) = \begin{cases} \frac{1}{2} & n = 0, 1\\ 0 & \text{otherwise} \end{cases}$$

$$H(z) = \frac{1}{2}(1+z^{-1})$$

Frequency Response of Ex.1

$$y(n) = x(n) + \frac{1}{2}y(n-1)$$
$$h(n) = \begin{cases} 0 & n < 0\\ \left(\frac{1}{2}\right)^n & n \ge 0 \end{cases}$$

$$H(z) = \frac{1}{1 - \frac{1}{2}z^{-1}}$$

Frequency Response of Ex.2

amplitude

phase

FIR/IIR, recursive/non recursive

{ non recursive : no feedback loops inside recursive : feedback loop(s) exist

Transfer Function

$$H(z) = \frac{a_0 + a_1 z^{-1} + \dots + a_N z^{-N}}{1 + b_1 z^{-1} + \dots + b_N z^{-N}} \quad \text{fun}$$

N –th order rational function in z^{-1}

$$\frac{Y(z)}{X(z)} = \frac{a_0 + a_1 z^{-1} + \dots + a_N z^{-N}}{1 + b_1 z^{-1} + \dots + b_N z^{-N}}$$

$$(1 + b_1 z^{-1} + \dots + b_N z^{-N})Y(z) = (a_0 + a_1 z^{-1} + \dots + a_N z^{-N})X(z)$$

 $y(n) + b_1 y(n-1) + \dots + b_N y(n-N) = a_0 x(n) + a_1 x(n-1) + \dots + a_N x(n-N)$

Standard Difference Equation

Realization of Standard Difference Equation

 $y(n) = a_0 x(n) + a_1 x(n-1) + \dots + a_N x(n-N) - b_1 y(n-1) - \dots - b_N y(n-N)$

2N delays 2N+1 multiplications 2N additions

Equivalent Transformation

N delays 2N+1 multiplications 2N additions

Another Equivalent Transformation

change in Order of subblocks

N delays2*N*+1 multiplications2*N* additions

Flow Reversal ---- yet another equivalence

Exercise 1

- Prove that the *z*-transform of the convolution of two sequences is the product of the respective *z*transforms.
- 2. Obtain the transfer function for an *N*-tap moving average filter given by

$$y(n) = \frac{1}{N} \sum_{k=0}^{N-1} x(n-k)$$

and calculate its magnitude response.

- 3. Prove that the system of Example 2 is BIBO stable.
- 4. Show an example of recursive but FIR systems.