1.Introduction to Waveguide

1-1.Waveguide(1)coaxial line

(2)metallic waveguide

Waveguide (-continued)

(3)planar waveguide

(a)strip line

(c)suspended strip line

(b)micro-strip line

(d)co-planar line

(e)slot line

Waveguide (-continued)

(4) dielectric waveguide

(a)image line

(b)NRD (Non-Radiated Dielectric) guide

(c)dielectric rod

(d)strip line

(e)buried waveguide

Waveguide (-continued)

(4)dielectric waveguide (f)strip-loaded waveguide

(g)rib (ridge) waveguide

(h)metal-cladded waveguide

Transmission line and waveguide

- 1-2. transmission line and waveguide
- (1) for long distance transmission
- (2) for constructing devices

required to be low loss

loss: conductor loss
dielectric loss
radiation loss (scattering, bending)

Waveguide loss: conductor loss

1-3. Waveguide loss

(1)conductor loss

current density (conduction current): $I_c = \sigma E$

$$\nabla \times H = j\omega \varepsilon E + \sigma E \cong \sigma E$$

$$(\because \varepsilon_0 = 8.85 \times 10^{-12} \, F \, / \, m, \omega \approx 10^{10}, \sigma >> \omega \varepsilon)$$

$$\nabla \times \nabla \times E = -\nabla^2 E = -j\omega \mu \nabla \times H$$

$$\nabla^2 E = j\omega \mu (\sigma E)$$

$$\therefore \nabla^2 I_c = j\omega \mu \sigma (I_c)$$

Waveguide loss: conductor loss

current: z-direction (extends in y-z plane) in a conductor region (x>0)

$$\partial / \partial y, \partial / \partial z \ll \partial / \partial x$$

$$I_c = I_0 \exp(-\sqrt{j\omega\mu\sigma}x) = I_0 \exp(-\sqrt{\frac{\omega\mu\sigma}{2}}(1+j)x) = I_0 \exp(-\frac{x}{d}(1+j))$$

$$d = \sqrt{\frac{2}{\omega\mu\sigma}} = \frac{1}{\sqrt{\pi f\mu\sigma}} : skin - depth$$

power dissipation

in a sheet current of $\Delta x \times 1 \times 1$: $(|I_c|\Delta x)^2 \times \frac{1}{\sigma} \frac{1}{\Delta x}$

total power dissipation
$$P_c = \int_0^\infty \frac{1}{\sigma} |I_c|^2 dx = \frac{d}{2\sigma} I_0^2$$

Surface resistance

$$I = \int_{0}^{\infty} I_{c} dx = \frac{d}{1+j} I_{0}$$

$$|I| = \frac{d}{\sqrt{2}} I_{0}$$

$$P = \frac{d}{1+j} \left(\frac{\sqrt{2}|I|}{1+j} \right)^{2} = \frac{d}{1+j} I_{0}$$

$$P_c = \frac{d}{2\sigma} \left(\frac{\sqrt{2}}{d} |I| \right)^2 = R_s |I|^2$$

$$R_s[\Omega]$$
: surface resistance $\propto \frac{1}{\sigma d} = \sqrt{\frac{\pi f \mu}{\sigma}}$

ex. Cu : σ =5.65×10⁷ (S/m) --> d=0.67 μ m, R=26 $m\Omega$ (@10GHz) Ag(4N) : σ =6.14×10⁷ (S/m)

Note that σ is temperature-dependent.

Waveguide loss: dielectric loss

(2)dielectric loss

$$\varepsilon_{r} = \varepsilon_{r}^{'} - j\varepsilon_{r}^{"}$$

$$\tan \delta = \frac{\varepsilon_{r}^{"}}{\varepsilon_{r}^{'}}$$

propagation constant

$$\Gamma = j\omega\sqrt{\varepsilon_0\mu_0}\sqrt{\varepsilon_r} = j\omega\sqrt{\varepsilon_0\mu_0}\sqrt{|\varepsilon_r|}e^{-j\delta/2}$$
$$= \omega\sqrt{\varepsilon_0\mu_0}\sqrt{|\varepsilon_r|}(j\cos\frac{\delta}{2} + \sin\frac{\delta}{2})$$

power carried by this electro-magnetic wave

$$\left|e^{-\Gamma z}\right|^2$$

attenuation constant

$$2\omega\sqrt{\varepsilon_0\mu_0}\sqrt{|\varepsilon_r|}\sin\frac{\delta}{2}\approx\omega\sqrt{\varepsilon_0\mu_0}\sqrt{|\varepsilon_r|}\delta=k_0\sqrt{|\varepsilon_r|}\delta$$

Waveguide loss: radiation loss

- (3) radiation loss
 - (a)scattering loss due to waveguide inhomogeneity
 - (i) the boundary roughness
 - (ii)the inhomogeneity of material, etc...
 - (b)bending loss in the curved waveguide conversion between guided and radiation mode