(10) Correspondence to the free electron model

Upper half of the band is approximated by free electron with $m<0$.
Opposite response to electric field,
\rightarrow Hole with + charge
(11) Electron band

(12) 2-Dimensional Square Lattice

$$
\phi=\sum_{n} \sum_{m} e^{i n k a} e^{i m k a} \chi_{n m}
$$

$$
E \propto \sum_{n} \sum_{m} \sum_{p} \sum_{q} e^{i(n-m) k a} e^{i(p-q) k a} \int \chi_{m}^{*} H \chi_{n} d \tau
$$

$$
E=e^{\frac{n-1}{i k a}} \beta+\alpha+e^{-i k a} \beta+e^{\frac{m-1}{i k a}} \beta+e^{-i k a} \beta
$$

$$
E=\alpha+2 \beta \cos k_{x} a+2 \beta \cos _{y} a
$$

(12) 2-Dimensional Square Lattice
$E=\alpha+2 \beta \cos k_{x} a+2 \beta \cos k_{y} a$

Bandwidth: 8β
(In general, bandwidth is $2 z \beta$, where z is the coordination number (the number of the nearby sites.))
(12) 2-Dimensional Square Lattice

Electron-like Fermi surface equi-energy surface for $E=\alpha$.

Hole-like Fermi surface
(12) 2-Dimensional Square Lattice

Cupper oxide high-temperature ζ superconductor

Fermi surface of the hole-doped superconductor, $\left(\mathrm{La}_{1-x} \mathrm{Sr}_{\chi}\right)_{2} \mathrm{CuO}_{4}$

Fermi surface of the parent $\mathrm{La}_{2} \mathrm{CuO}_{4}$ (antiferromagnetic insulator)
$\mathrm{La}_{2} \mathrm{Cu}^{2+} \mathrm{O}_{4} \rightarrow \mathrm{Cu}: \mathrm{d}^{9} \rightarrow \mathrm{~d}_{x^{2}-y^{2}}$ band has one electron (Half-filled)
(13) Tight-bonding method for more than two atoms in a cell
${ }^{4}$ LCAO-MO $\phi=\sum_{i} c_{i} \chi_{i}$
For 2 atoms, $i=1,2$

Bloch function is made from χ_{i} for the whole crystal.

$$
\chi_{i} \rightarrow \sum e^{i n k a} \chi_{i}(n)
$$

Crystal orbital is constructed instead of molecular orbital as,

$$
\phi=\sum_{i} \sum_{n} c_{i} e^{i n k a} \chi_{i}(n)
$$

Calculate $E=\frac{\int \phi^{*} H \phi d \tau}{\int \phi^{*} \phi d \tau}$ from this, and similarly to the usual Mo theory,

$$
E \text {, }
$$ $\frac{\partial E}{\partial c_{i}}=0$ leads to simultaneous equations of c_{i}, and the secular equation is

$\left|\begin{array}{ccc}\alpha_{11}(k)-E & \beta_{12}(k) & \cdots \cdots \\ \beta_{21}(k) & \alpha_{22}(k)-E & \\ & & \end{array}\right|=0$
Since χ_{i} is Bloch function, the matrix elements, α and β are functions of k :

$$
\begin{aligned}
& \alpha_{i i}(k)=\int\left(\sum_{m} e^{-i m k a} \chi_{i}^{*}(m)\right) H\left(\sum_{n} e^{i n k a} \chi_{i}^{*}(n)\right) d \tau \\
& =\alpha_{i}+\sum \beta_{i i}(n) e^{i n k a} \quad{ }^{n} \quad \beta_{i i}(n)=\int \chi_{i}^{*}(\underbrace{0) H \chi_{i}(n)} d \tau \\
& \beta_{i j}(k)=\int\left(\sum_{m} e^{-i m k a} \chi_{i}^{*}(m)\right) H\left(\sum_{n} e^{i n k a} \chi_{j}^{*}(n)\right) d \tau \quad \text { Nearby atoms } \\
& =\sum \beta_{i j}(n) e^{i n k a} \text { When interaction } \beta \text { exists in the } r \text { direction, } \\
& \beta_{i j}(n)=\int \chi_{i}^{*}(0) \overbrace{(0) \chi_{j}(n) d \tau}^{\text {Nearby atoms }}
\end{aligned}
$$

(14) Energy band of
one-dimensional alternating chain
β is alternately β_{1} and β_{2}.
\rightarrow Two atoms 1 and 2 in a cell.

For simplicity, put $\left\langle\chi_{1}\right| H\left|\chi_{1}\right\rangle=\left\langle\chi_{2}\right| H\left|\chi_{2}\right\rangle=\alpha=0$.

$$
\left\langle\chi_{1}\right| H\left|\chi_{2}>=<\chi_{2}\right| H \mid \chi_{1}>^{*}=\beta_{2} e^{-i k a}+\beta_{1} e^{i k a}
$$

β_{2} in the $-a$ direction from $1 \quad \beta_{1}$ in the a direction from 1
Secular equation is,
$\left|\begin{array}{cc}-E & \beta_{2} e^{-i k a}+\beta_{1} e^{i k a} \\ \beta_{2} e^{i k a}+\beta_{1} e^{-i k a} & -E\end{array}\right|=0$

The solution is depicted in the right:

$$
1+\cos 2 x=2 \cos ^{2} x
$$

Peierls Insulator: Long periodicity generates a new energy gap and makes the system insulating.

Metal

\square Insulator

Different β for single and double bonds

Energy band for a system with many atomic orbitals

LCAO-MO from all atomic orbitals in a cell
(N, each atom may have more than one.)

$$
\phi=\sum c_{i} \chi_{i}
$$

Make the Bloch function of each χ

$$
\chi_{i} \rightarrow \sum_{n} e^{i n k a} \chi_{i}(n) \text { leading to an }
$$

$N \times N$ secular equation

$$
\left|\begin{array}{ccc}
\alpha_{11}(k)-E & \beta_{12}(k) & \ldots . . \\
\beta_{21}(k) & \alpha_{22}(k)-E &
\end{array}\right|=0
$$

Since each element is a function of k,
this secular equation is solved at each k, to give N energy levels.
These energy levels for different k are connected to afford continuous energy bands (right).

Ge atom

Energy band of Ge

Forgetting k

Energy gap
\uparrow (Band gap)
C $\quad 5.47 \mathrm{eV}$
Si $\quad 1.12 \mathrm{eV}$
Ge 0.66 eV

Semiconductor
Energy band of Ge

Energy bands of solids

A unit of 1D energy band is $-\pi / a<k<\pi / a$
\square 2D, 3D

Solid-state physics defines the k-space from $e^{i k a}$: reciprocal lattice points at $2 \pi / a$. Crystallography defines the k-space from $e^{2 p i k a}$: reciprocal lattice points at $1 / a$.

How to make the Brillouin zone.Bordered by perpendicular bisectors

How to make the Brillouin zone
Bordered by perpendicular bisectors

Brillouin zone and the Bravais lattices
 is centered

Brillouin zone and the Bravais lattices

Reciprocal of face centered is body centered

Reciprocal of body centered is face centered

Brillouin zone and the Bravais lattices

bcc
body centered
cubic

面心立方格子
fcc
face centered
cubic

Fermi surface of metals
（1）Alkali metals
Li，Na，K

Fermi surface \Leftrightarrow trajectory of $k_{\mathrm{F}} \Leftrightarrow$ Surface at $E=E_{\mathrm{F}}=$ const Assuming free electron

$$
E=\frac{\hbar^{2}}{2 m}\left(k_{x}^{2}+k_{y}^{2}+k_{z}^{2}\right)=\text { const. }
$$

leads to a sphere in the k－space．

Fermi surface of alkali metals is not deviated from the perfect sphere by 1% ．

Energy interval in the k－space is $\Delta k=\frac{2 \pi}{N a}$
\square Volume of the Fermi sphere is half of the volume of the 1st Brillouin zone．

Fermi surface of metals
（1）Divalent metals

Fermi surface of metals
(2) Divalent and trivalent
Mg, Al

Fermi surface of metals

Density of states

Fermi surface of metals
(4) $\mathrm{Cu}, \mathrm{Ag}, \mathrm{Au} \quad \mathrm{s}^{1} \mathrm{~d}^{10} \rightarrow$ close to alkali metals

1D metal

$$
E=\frac{\hbar^{2} k_{x}^{2}}{2 m}=\text { const. leads to } k_{x}=k_{\mathrm{F}}=\text { const. }
$$

Examples of 1D metals
(1) 1D Platinum Complex KCP $\mathrm{K}_{2}\left[\mathrm{Pt}(\mathrm{CN})_{4}\right] \mathrm{Br}_{0.40} \times \mathrm{H}_{2} \mathrm{O}$

Pt surrounded by CN Metal 1D Chain

Metal at room temp. Insulator at low temp.

$\bigcirc \mathrm{Pt} \bigcirc_{\mathrm{Br}, \mathrm{Cl}}^{\mathrm{H}_{2} \mathrm{O}}$

Examples of 1D metals

Examples of 1D metals

(4) Organic Charge-Transfer Complex (TTF)(TCNQ)

Current flow

Examples of 2D metals

Examples
Cylindrical Fermi surface

Graphite
Organic superconductors

Organics : energy level
$\rightarrow \quad$ energy bands

Energy band of organic conductors consists of only HOMOs.

Fermi surface of the first organic superconductor
(TMTSF) PF_{6}

Fermi surface of organic superconductor
Fermi surface of organic superconductor

$$
\begin{aligned}
\beta_{11}=\beta_{22} & =\beta_{c} e^{i k c}+\beta_{c} e^{-i k c} \\
& =2 \beta_{c} \cos (k c) \\
\beta_{12}=\beta_{21}^{*} & =\beta_{p 1}+\beta_{p 2} e^{i(k b+k c)} \\
& +\beta_{q 2} e^{i k c}+\beta_{q 1} e^{i k b}
\end{aligned}
$$

Cylindrical Fermi surface indicated 2D.
Program available from http://www.op.titech.ac.jp/lab/mori/lib/program.html

Excise Band structure of the θ-phase

This generally found structure is called herringbone structure in organic crystals or alternatively θ-phase in organic conductors. Calculate the energy bands of this structure.

A unit cell contains two molecules, numbered 1 and 2. Transfer t_{a}, running along a , is between two Molecule 1 Transfer t_{p}, running diagonal $(a / 2, b / 2)$ etc, is between Molecule 1 and 2.
(1) How many Molecule 1 exist near Molecule 1?

From this, obtain the diagonal element F_{11}.

(1) How many Molecule 2 exist near Molecule 1?

From this, obtain the nondiagonal element F_{12}
(3) Solve the secular equation, and obtain an equation
of $E\left(k_{\mathrm{a}}, k_{\mathrm{b}}\right)$ representing the energy band.

$$
\cos x+\cos y=2 \cos \frac{x+y}{2} \cos \frac{x-y}{2}
$$

