(10) Correspondence to the free electron model

Free electron model is the bottom parabola of the cos function.

Approximated by $E = \frac{\pi^2 k^2}{2m}$

m is different from the value for a real electron.

(Effective mass)

 $4 \beta \text{ large} \rightarrow m \text{ small} \rightarrow \text{ mobile}$

 $4 \beta \text{ small} \rightarrow m \text{ large} \rightarrow \text{not mobile}$

Upper half of the band is approximated by free electron with m < 0. Opposite response to electric field,

→ Hole with + charge

(12) 2-Dimensional Square Lattice

(12) 2-Dimensional Square Lattice

Cupper oxide high-temperature superconductor

$$(La_{1-x}Sr_x)_2CuO_4$$

Fermi surface of the hole-doped superconductor, (La_{1-x}Sr_x)₂CuO₄

Fermi surface of the parent La₂CuO₄ (antiferromagnetic insulator)

$$\text{La}_2\text{Cu}^{2+}\text{O}_4 \rightarrow \text{Cu}: d^9 \rightarrow d_{x^2-y^2}$$
 band has one electron (Half-filled)

(13) Tight-bonding method for more than two atoms in a cell

LCAO-MO
$$\phi = \sum_{i} c_i \chi_i$$

For 2 atoms, i=1, 2

Bloch function is made from χ_i for the whole crystal.

$$\chi_i \to \sum e^{inka} \chi_i(n)$$

Crystal orbital is constructed instead of molecular orbital as,

$$\phi = \sum_{i} \sum_{n} c_{i} e^{inka} \chi_{i}(n)$$

Calculate $E = \frac{\int \phi * H \phi d\tau}{\int \phi * \phi d\tau}$ from this, and similarly to the usual Mo theory,

 $\frac{\partial E}{\partial c_i} = 0$ leads to simultaneous equations of c_i , and the secular equation is

$$\begin{vmatrix} \alpha_{11}(k) - E & \beta_{12}(k) & \dots \\ \beta_{21}(k) & \alpha_{22}(k) - E & = 0 \end{vmatrix} = 0$$

Since χ_i is Bloch function, the matrix elements, α and β are functions of k:

$$\alpha_{ii}(k) = \int (\sum_{i} e^{-imka} \chi_{i}^{*}(m)) H(\sum_{i} e^{inka} \chi_{i}^{*}(n)) d\tau$$

$$= \alpha_{i} + \sum_{i} \beta_{ii}(n) e^{inka} \qquad \beta_{ii}(n) = \int \chi_{i}^{*}(0) H \chi_{i}(n) d\tau$$

$$\beta_{ij}(k) = \int (\sum_{i} e^{-imka} \chi_{i}^{*}(m)) H(\sum_{i} e^{inka} \chi_{j}^{*}(n)) d\tau$$
Nearby atoms
$$= \sum_{i} \beta_{ij}(n) e^{inka} \qquad \text{When interaction } \beta \text{ exists in the } r \text{ direction,}$$
add a term βe^{ikr} .

Nearby atoms

$$\beta_{ii}(n) = \int \chi_i^*(0) H \chi_i(n) d\tau$$

$$\beta$$
 is alternately β_1 and β_2 .

Two atoms 1 and 2 in a cell.

For simplicity, put $\langle \chi_1 | H | \chi_1 \rangle = \langle \chi_2 | H | \chi_2 \rangle = \alpha = 0$. $\langle \chi_1 | H | \chi_2 \rangle = \langle \chi_2 | H | \chi_1 \rangle^* = \beta_2 e^{-ika} + \beta_1 e^{ika}$

 β_2 in the -a direction from 1

 β_1 in the a direction from 1

Secular equation is,

$$\begin{vmatrix} -E & \beta_2 e^{-ika} + \beta_1 e^{ika} \\ \beta_2 e^{ika} + \beta_1 e^{-ika} & -E \end{vmatrix} = 0$$

The solution is depicted in the right:

$$1 + \cos 2x = 2\cos^2 x$$

Peierls Insulator: Long periodicity generates a new energy gap and makes the system insulating.

LCAO-MO from all atomic orbitals in a cell

(N, each atom may have more than one.)
$$\phi = \sum_{i} c_{i} \chi_{i}$$

Make the Bloch function of each χ

$$\chi_i \to \sum_n e^{inka} \chi_i(n)$$
 leading to an

 $N \times N$ secular equation

Since each element is a function of k, this secular equation is solved at each k, to give N energy levels.

These energy levels for different k are connected to afford continuous energy bands (right).

Brillouin zone and the Bravais lattices

Reciprocal of face centered is body centered

Reciprocal of body centered is face centered

Brillouin zone and

面心立方格子 fcc face centered cubic

Fermi surface of metals

(1) Alkali metals Li, Na, K

Fermi surface \Leftrightarrow trajectory of $k_F \Leftrightarrow$ Surface at $E=E_F=$ const.

Assuming free electron

$$E = \frac{\hbar^2}{2m} (k_x^2 + k_y^2 + k_z^2) = \text{const.}$$

leads to a sphere in the k-space.

Fermi surface of alkali metals is not deviated from the perfect sphere by 1%.

Energy interval in the k-space is $\Delta k = \frac{2\pi}{Na}$

Volume of the Fermi sphere is half of the volume of the 1st Brillouin zone.

Fermi surface of metals

(1) Divalent metals Mg, Al

Volume of the Fermi sphere is the same as the volume of the 1st Brillouin zone.

第1 ゾーン

Excise Band structure of the θ -phase

This generally found structure is called herringbone structure in organic crystals or alternatively θ -phase in organic conductors. Calculate the energy bands of this structure.

A unit cell contains two molecules, numbered 1 and 2. Transfer t_a , running along a, is between two Molecule 1. Transfer t_p , running diagonal (a/2, b/2) etc, is between Molecule 1 and 2.

- (1) How many Molecule 1 exist near Molecule 1? From this, obtain the diagonal element F_{11} .
- (1) How many Molecule 2 exist near Molecule 1? From this, obtain the nondiagonal element F_{12} .
- (3) Solve the secular equation, and obtain an equation of $E(k_a, k_b)$ representing the energy band.

$$\cos x + \cos y = 2\cos\frac{x+y}{2}\cos\frac{x-y}{2}$$