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Advanced Course in Surface Properties of Hydrogen Molecule o
Organic Materials (2) LCAO-MO  #=Caxa +CpYB
4/ -4
(4) SecularEq. |*B A |_,
1. Energy Band of Organic Crystals (Mori) | | B a-E 6 o
2. Organic Conductors and Organic Electronics (Mori) (6) A Antibonding
) ) . : -5 — d=xya-18
3. Optical Properties of Solids (Ishikawa) \/
4. Liquid Crystals (Ishikawa) _
5. Surface Analysis and Spectroscopy (Ouchi) a+p -H— P=xan+XB A\ Bonding
6. Surface Properties of Organic Materials (Matsumoto)
7. Organic Nanomaterials (Matsumoto) Stabilization due to the covalent bond is
Molecular orbital theory +Ze H,O l
(1) One-electron Schrodinger equation ¢ .e (5) N-order equation of E
2 2
-4 2 e Zn +e @ ® +p P
5=V - Z_]¢: E¢ (6) N energy levels of E (E A 1)
2m drey, T T,
Put one electron in the arranged nuclei. l Simultaneous equation for c;
) LCAO-MO (Linear Combination of Atomic Orbitals) (7) N-set of c; (& B 4%) = Molecular orbital (5 F #t.:&)
Z N : total number of atomic orbitals
P=2.Cx

B) E= J s energy minimum é:o i=1-N

l p*gdr &,

(4) Secular equation N x N Non diagonal : resonance integrals
o-E B, 0 ﬂij:JZiHZde
Bu  an-E *
0 B @i = J xiHxdz

Diagonal : Energy level of i-th AO
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Due to the imperfect screening, going right leads to
[ ]ionization energy, and
Going right leads to electronically negative.

Eoc—é’2

atomic orbital.

Diatomic molecule like N,
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Electron configuration
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Bond order is[ } [ ]

Bond order = [(#Bonding orbital) — (#Antibonding orbital)]/2
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n -Electron System  Huckel Method

0 o and & -orbitals are orthogonal.

Consider only this part.

0 B for nearby C=C is nonzero. Others are zero.
O All overlap integrals are S=0.

Example ethylene Bonding energy is

H\l 2/H a—E IB -0
B a-E| E

H/C=C\H
0-f — ¢=xyan—XB 88

a+p -H— $=xn+X8 88

J

Hickel Method for Complicated 7 -Electron Sytems

[0 Number carbon atoms with 7, the total is N.

0 Wrighta N X N secular equation, with all diagonal terms o« —E

0 Nondiagonal terms are S for bonded i-th and j-th carbons,
and zero for non bonded carbons.

0 | determinant | =0 leads to N-th equation of E, which is solved
to obtain N energy levels.

[0 Put electrons from the bottom. (#Electron)=(#Carbon)

Wright the secular equation of cyclobutadiene.

The solution is
o-2p —

.
e+2p H-

Bonding energy is

)

There is no energy gain compared with two double bonds
2X2B =4

Wright the secular equation of benzene.

o _/

The solution Bonding energy is

2r — i

v-p = Compared with three doublebonds
w4 B 11l 3X28 _:6_/3,therei52/3 energy gain
¥ (delocalization energy).
a+2 ‘[—r 4n+2 membered ring  delocalization aromatic

4n membered ring no delocalization
(Huckel rule)




Energy Band (Tight-Binding Approximation)

LCAO-MO of a one-dimensional polymer B —
(Hickel MO of polyacetylene)
X1 X2 X3 Xa Xs
p=2.C1
n H H H H
The secular equation is 2 a4
A Y
a-E £ 0 .. H1 H3 ) ) )
pa-E f 1
0 B a-E ]

We can directly solve this, but we use another way:

$=2.Cot g 2

translation by one unit cell, r — r+a X1 X2 X3 Xa Xs
should not change the physics, because
it only changes the atom number. X2 X3 Xa Xs Xo

So the electron density o = ¢ * ¢ does
not change. Accordingly, C,.1* Chs1 = Ch*Cp,
or only the phase of ¢, may change. Thus, we can put
Chs1 = C,€% = c,eka  Consequently ¢ is:
i2ka i3ka idka

d=cylr,+e“p+e®y, +e* %y +e' "y, +..]
:Gozemka;(n

(Bloch function)
C, is mere a normalization constant.

inka

Energy of ¢ = Ze is

J pHgs ) (Ze "2 H (e 7,)de
Jorgar =] (Ze 'mkazmee'"kazn)dr
ZZe“”‘m’“szHzndr g B

= nsz:ei(n—m)ka J Z;anf n
n om

m=n-1 n n+l

E=

N(eikaﬂ+ a+e_ikaﬂ) ) / \ )
= N ﬂ:JanlHanT ﬁ:JlnﬂHanT
= | zHx.dr

_ ika ~ika
[ E = a+2pcoska } Coska_ S t&

[ E = a+2pcoska ]

0 Owing to the periodicity,
we only consider
or

(-n/a] ( n/a ]
(2) Owing to 8 <0,
Maximumof Eis (atk= n/a) E = [ ]
Minimum of Eis (atk= 0) E = [ J

(3) As a whole, the energy band has the bandwidth, | )




{E:a+2ﬂcoska } g 2

L $=2e™y, N0 1 2 3 4

(4) Make a ring.

(Otherwise, "edge state"

appears.)

When the total atoms are N, N-the atom = 0-th atom, so

eia =1 — Nka=2nn (n : integer) *k :[ ] Periodical
E

3 Arranged with a fine interval
/ / The interval is Ak =[ ]

Very fine for large N.
— Nearly continuous (Energy band)

boundary condition

{ E = a+2pcoska }

k=0leadsto  #=Xot it 2o+ X5t
k= m/a leads to ¢:[ ]
E
a—28 RPN
\ / ®© 00000
a k All intervals have nodes.
/ — Completely antibonding
0427 000000
} 21 Completely bonding

The state next to k=0 has extra € phase. When rotated around the solid,
the phase shifts by 2. So the whole solid has only one node.

(6) Total number of levels E

) oz — from —n/a to w/a \ /
-l a 5 i
—?( ] : Lok
Na —r level interval \ W/
N atoms — N energy levels
(7) For N electrons E
2Kk

ol N | .

for half-filled. \\/
WooWooww —Tc/La I

kF:TC/Za

L[| Polyacetylene without bond alternation

(8) For 2N electrons E

2
2r K
Na \

All states are occupied

| |

Two electrons, * and ! , enter in one atomic orbital x .
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(9) ForN=6
2/m

E

2/m 27
=— | to E = a+2pBcoska=a+2Lcos—n
/ oa eads to a+2p a+2p 5

|

ce (529 (e ) [+ 4 (== ) (o 24

- bt L gri=—id 3

i K Y == a—f

,,,,,,,,,,,,,,,,,,,,,, > === a+p
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, » = at+2p

7 orbitals (Hlckel method) for benzene

Similarly, we can calculate Hiickel molecular orbitals for N-carbon rings.

Excise Hiickel Molecular Orbital of Cyclopentadienyl

_._Cyclopentadienyl anion (right) is pentagon
" and has delocalized negative charge.
Calculate the energy levels from the

equation of the tight-binding band, E = o+ 23cos ka.

(1) When N=5, k takes the values of 0. *A. *B. Show A and B.

(2) Obtain the energy levels.

Use cos(2n/5) = cos72° =0.309. cos(4n/5) = cos144° = -0.809.
( 3) Calculate energies of the anion, the radical and the cation.

eika
=C

No

=x+iy
DS+ 15in @

3n/2

7

nbonding

n=8

3n/2

T

/2
y

n=6 E = a+2pcoska

N=4n uses nonbonding level

— No stabilization
N=4n +2 does not have nonbonding
— stabilization —  Huckel role

Free electron approximation

(1) Simple free electron approximation derived from
“the first principle of quantum mechanics.

(2) Electrons in metals, particularly the energy and

momentum distribution, are investigated starting from

a large number of free electrons.

(3) Distribution of electrons at finite temperatures are

discussed in view of the Fermi statistics:

statistical mechanics.




Free electron E
21,2
E = T parabola
B A E—— 2m
p=—"Tk p=hk
left bound electron right bound electron
0 koep

Wave number k=2 /A isinverse of the wavelength.
The number of waves in unit X 2 n length.

2 2 2
pe+p,+P
E=—"—"""=1+V i, three dimension.

Schrddi%gr equation is,
Ao R 9 o7 PP
- [__(

+ T +V]gp=E
2m & & 0’22) lp=E¢ _
Eigenfunction (solution) for V=0is ¢(X,Y,z) = gl Hiat)
Eignevalue (energy) is E :[ ]

E

\

We cannot depict k,
at the same time.

X

ky
2 Fermi energy
T . : - E:—(kX2+k2+k22) :
Instead of an infinite space, consider a box with a finite length L, om y Points on the sphere
and the x=L edge is connected to x=0. have the same energy.
-(Otherwise, the edge generates a /
"surface" state.) Fermi surface
¢ (x+L,y,2)= ¢ (x,Y,2)
— L —_—
ik, L +
et =1 - kl=2nn - kx:[ ] | i
—] k, or —
- O = [
T (n : integer) 27 k, or 2x
Slmlsry ory,z, , ] L z L
= —7[ n, = —7T ny :—7[ n, Interval of energy levels Fill N electrons according to the
L L L — continuous for large L.  Pauli's exclusion principle.
(Consider a cube with L edges.) X=0| %=L - Energy band Starting from the origin with the

Periodical boundary condition

minimum energy, to the inside
of a sphere with radius k=+" k2+k 2+k,?




Volume of a sphere with radius k is
RUPE

%,—23—1N ‘{ ]zN where V = L°
(—)3

Interval of states (3D)  Electron with the highest energy

(Fermi energy) is
kFZ:k 2+k 2+k 2

hZ k2 hZ
2m 2m

is solved as for N to give,

3

One energy level has two electrons
with * and ! spins

E F

Differentiate as for E, and the number of energy levels
per unit energy (density of states or states density) is

a or
\ L d_N L D(E) = 3N
dE 2E
E D(E) o< EV2
Count energy levels
for each energy interval.
F---Z-Z2Z20 ng
’\ -
S\ Ky
ke D(E)
Sphere
D(E) is the number

‘ of levels in between
A E and E+dE.

Another derivation of states density

Kk, dN is the number of states in between E and E+dE.
— Surface of the sphere
Nk 5 Akidk
=dN
\W\ (ﬁ 3
\ L 7 Interval of the states in 3D
| X
— thZ
N E = L ) dE =
E E+dE 2m
D(E)_d_N_247zk2 1 _vam _V 2m;.;
dE 27\3 Rk 27° n*, 27 h
(T) —dk s S
m 2mE The same
conclusion

Two-dimensiogal metal

h 4
E =—(kX2 +ky2) = const. leads to k2 + k2 =ke = const.
k, 2m

- H

Occupied ' Fermi surface = cylinder

Area of the circle

22 Nyl :[ J-»D(E)zd—Nz[ }
(_)2 2t dE




Fermi statistics: only one electron can occupy a state.
Ci

\/E

@000O®OO0

Occupied by N;electrons

— N; electrons are in the C; states with energy E.
We cannot distinguish N; electrons, so that the statistical
weight is the number to choose N; from C;:

D(E)

C!
W, =————
The definition of entropy in statistical mechanics is N; '(C -N, )l

- kBZ(Ci InC; —N;InN; - (C; = N)In(C; - Ni))
‘ \
Stirling' equation INN!=NInN —N

The realized distribution of N; minimizes the Gibbs free energy
F=E-TS-uN where E=> N,E;. N=2N;.
So differentiation of F as for N; is zero to give,

=E, +kgT(InN; -In(C,—N,))— =0

C—N

N Occupation N. .
- |N- |:[ ]- f(E)___
T=3000 K T=300 K F
1 N‘/T:O K Fermi-Dirac distribution
f(E) & E When T=0:
0 1
50000 K for metals—_EF e 41 _[ ]
When T # 0, f(E) changes RN
continuously from 1 to O E>un 1(E)= et 11 [ ]
with the width of kgT.

E-= u : chemical potential

The real electron number is D(E) X f(E)

;B — Ci X % =N;  AtT#0, these electrons
: are thermally excited.
E E E
X EF \\ =
D(E) 0 1 ’ N
f(E)
E. _50000K

>100 - Only <1% electrons are

kgT 300K thermally excited.

Internal energy of metal electrons
u(T) = | (E ~E.)D(E)f (E)dE

b Specific heat \Measured from Eg = 0.
¢, =% =]/ (E-EpE) e
“—— T appears only in f(E).
1 1
where HE) == T 4l X= E—u gives
BT 11 Bl

a dE

g - E

0,1_ J dx k T 1 \ F

f(E) L E

(s 0

5T isnonzero only near E.
so that approximated to be éf.(I_E)

D(E)~D(Ey). )\ E




¢, =) [[ (- )T ae
eX
=D (k Tx)T x +1) Kk Tdx

eX
= KTD(E 7 7 2/3 from table of integrals
¥ Specific heat of metal electrons
. 3N 3N _ ]
or using D(E.)==—== Te: Fermi temperature
2 E; 2 KgTe
N E T 2 T
V:”_§ 7 o2 Nk A =R
3 2 kT, 2 T 2 \TF

Gas constant

If free electron is an ideal gas, according to the Dulong-Petit theorem,
the specific heat is C,=3R. However, it is less than

o I 300K oo

—_—~ ~

T 50000K

mmm) Owing to the Fermi distribution, only kgT electrons near
Erare excited, and contribute to the specific heat.

- Metal electrons are "Fermi" particles! Only phonons
. . athighT
W) Fermigas  cf. Classical gas C, \
At low temperatures (<50 K), the lattice
vibration (photon) decays as C, o« T3 so that T

:THBTS‘_ 7T o
\%

free electron  phonon

Experimental estimation of y — D(Eg) from

the low-temperature (<4 K) specific heat. y { T2
Bose-Einstein statistics c N.
N : ! f(E)=—"= Bose-Einstein statistics
Insert N; particles in C; levels, allowing g Y G
. any particles in the same level. ® ® a E
1 [ [ ) T-0
The number to arrange N; / 1 \ \ Ei:“ >_OO e+0m_)—>1 7 ;(E) :O+ i Hleeoooooe
particles and C;-1 partitions. 0000000000000 iR _ ? (®) f(E)
C,+ N, -1)! All particles go to the lowest level.
=S i CiH+N, —1
NHE ! T Bou-hwgives  f(E)= Planck distribution
Ci-1- C,; gives eG 1

InW, =(C, +N;)In(C, + N;)—N,InN, -C,InC,
Put this in F=E-TS-uN, and differentiation as for N; is put zero to

£ L

N;
‘ Ci;Ni okl

Phonon (lattice vibration) is Bose-Einstein particle.
Photon (light) is the same — black body

f(E)—; +[ %

k T @1
Quantum statistics




E s

E-u>>kgT leads to elarge>>1 f(E)=¢e '
Boltzmann (classical) distribution

Classical distribution
Each i-th state has n; particles, with the

total N= 23 n, particles.
The statistical weight is

!
IR INNI=NInN —N
nin,tn,t .- Stirling's equation
S0
!
InW = InL:N InN =Y_n,Inn,
n!n,tngt - i

Put this in F=E-TS-uN  (S=kgInW)
F :ZEini —ksT(NInN —Zni Inni)—;zZni

Differentiation as for n;is zero to give,

A
—_ = =0
-4 éNi
SO A
f(E)=n = [ J Boltzmann sidtribution
I [}
1
E f(E) = Ei-u
e’ -1
Bose distribution : Particles with integer spin quantum number :
Light (photon), Lattice vibration (phonon), 4He
\ Boltzmann distribution : classical particles
_Ei-u 1
1 + f(E)=e f(E) =7
0 i(E) e +1
™~ Fermi distribution : Particles with half-integer spin
quantum number : electron, proton, neutron, 3He

Everything approaches to Boltzmann at E;- 1 >>kgT.

One-dimensional metal

-h2 2
= 2:: = const. leadsto  k,=kg = const.
v
77kz (No momentum for k, k,

= does not move)

. . kX

Ky
Unoccupied
Occ.

Unoccupied
Fermi surface consists of a pair of planes.




