
Advanced Course in Surface Properties of 
Organic Materials

1. Energy Band of Organic Crystals (Mori)
2. Organic Conductors and Organic Electronics (Mori)
3. Optical Properties of Solids (Ishikawa)
4. Liquid Crystals (Ishikawa)
5. Surface Analysis and Spectroscopy (Ouchi)
6. Surface Properties of Organic Materials (Matsumoto)
7. Organic Nanomaterials (Matsumoto)
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+e +eHydrogen Molecule

(2) LCAO-MO φ = cAχA + cBχB

(4) Secular Eq.

(6)

α+β

α-β

α − E β
β α − E

= 0

φ = χA + χ B

φ = χA − χ B

φ

Bonding

Antibonding

Stabilization due to the covalent bond is 

Molecular orbital theory 

(1) One-electron Schrödinger equation

(2) LCAO-MO (Linear Combination of Atomic Orbitals)

φ = ciχ i
i

N

∑

Put one electron in the arranged nuclei.

N：total number of atomic orbitals

+Ze
-e

+e +e

H2O

E =
φ * Hφdτ∫
φ *φdτ∫

(3) energy minimum 　i=1〜N∂E
∂ci

= 0

α11 − E β12 0 ......
β 21 α 22 − E β 23

0 β 32 α 33 − E
= 0

(4) Secular equation　N×N

Diagonal：Energy level of i-th AO
αii = χ i

*Hχidτ∫

Non diagonal： resonance integrals

βij = χ i
*Hχ jdτ∫

[−
h2

2m
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e2

4πε0

Zn

rnn
∑ ]φ = Eφ

(5) N-order equation of E

(6) N energy levels of E (固有値)

(7) N-set of ci (固有関数)＝Molecular orbital (分子軌道)
Simultaneous equation for ci



Polar bond
(2) LCAO-MO φ = cAχA + cBχB

(4) Secular Eq.

(6)

αA − E β
β αB − E

= 0

3pz 1s

HCl

αA

αB

Bonding

Antibonding

Large on A

Large on B

-13.6 eV-15 eV

Clδ-Hδ+Large αA
　→　Electronically negative atom

E =
αA + αB

2
±

1
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(α A −αB )2 + 4β 2 →
αA + αB

2
±

αA −α B
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Due to the imperfect screening, going right leads to
 ionization energy, and 　atomic orbital.

Going right leads to electronically negative.

E ∝−ζ 2

Diatomic molecule like N2

N 1s＋2s＋2p×3　→　5AO×2＝10 AO

-e
+Ze +Ze

α1s − E β1s

β1s α1s − E
α2s − E β 2s

β 2s α2s − E
α2p − E βσ 0 0 0 0

βσ α2p − E 0 0 0 0
0 0 α2p − E β π 0 0
0 0 β π α2p − E 0 0
0 0 0 0 α2p − E β π

0 0 0 0 β π α2p − E

= 0

z

1s
A B A B A B A B A B

2s 2pz 2py 2px

=0

orthogonal

φ = c1χ1s
A + c2χ1s

B + c3χ 2s
A + c4 χ2s

B + c5χ2pz
A + c6χ2pz

B + c7χ2py
A + c8χ2py

B + c9χ2px
A + c10χ 2px

B

α1s

α2s

α2p

α1s+β1s

α1s-β1s
α2s+β2s

α2s-β2s

α2p+βσ

α2p-βσ

α2p+βπ

α2p-βπ

N2
7×2=14 electrons |βσ | >|βπ |

Electron configuration 
O2 F2

Bond order = [(#Bonding orbital)ー(#Antibonding orbital)]/2

Bond order is



π-Electron System　Hückel Method

� σ and π-orbitals are orthogonal.

� β for nearby C＝C is nonzero.  Others are zero.
� All overlap integrals are S=0.

σ

π

0

0
=0

Consider only this part.

Example   ethylene

H
C

H

H
C
H1 2 α − E β

β α − E
= 0

α+β

α-β

φ = χA + χ B

φ = χA − χ B

Bonding energy is

Hückel Method for Complicated π-Electron Sytems

� Number carbon atoms with π, the total is N.
� Wright a N×N secular equation, with all diagonal terms αーE.
�  Nondiagonal terms are β for bonded i-th and j-th carbons,  

and zero for non bonded carbons.
� ｜determinant｜=0 leads to N-th equation of E, which is solved

to obtain N energy levels.
� Put electrons from the bottom.  (#Electron)=(#Carbon)

C

C C
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H

HH

H
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34

Wright the secular equation of cyclobutadiene.

The solution is

α+2β

α-2β

α

Bonding energy is 

There is no energy gain compared with two double bonds
     2×2β＝4β

1
2

3
4

5

6

The solution 

α+2β

α-2β

α+β

α-β

Bonding energy is

Compared with three doublebonds
3×2β＝6β, there is 2β energy gain
(delocalization energy).
4n+2 membered ring 　delocalization　aromatic
4n　　membered ring   no delocalization　

(Hückel rule)

Wright the secular equation of benzene.



Energy Band　(Tight-Binding Approximation)

H H

H H H

H

H

H

H

β
a

χ1 χ2 χ3 χ4 χ5

1
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3
4

LCAO-MO of a one-dimensional polymer
(Hückel MO of polyacetylene)

The secular equation is

ϕ = cn χn
n

∑

α − E β 0 ......
β α − E β
0 β α − E

= 0

 
N×N次

We can directly solve this, but we use another way:

β
a

χ1 χ2 χ3 χ4 χ5

φ = cnχ n
n
∑

translation by one unit cell, r → r+a 
should not change the physics, because 
it only changes the atom number. 
So the electron density ρ＝φ* φ does
not change.  Accordingly, cn+1

＊
 cn +1 ＝ cn

＊cn ,
or only the phase of cn may change.  Thus, we can put 
cn +1＝ cn eiθ＝ cn eika ,  Consequently φ is:

χ6χ2 χ3 χ4 χ5

φ = c0[χ 0 + eika χ1 + ei 2kaχ 2 + ei 3kaχ 3 + ei 4ka χ4 + ....]

= c0 einkaχn
n

∑
(Bloch function) 　
c０ is mere a normalization constant.

φ = einkaχn
n

∑Energy of 　　　　is

E =
φ * Hφdτ∫
φ *φdτ∫ =

( e− imkaχ m
*

m
∑ )H ( einkaχ n

n
∑ )dτ∫

( e−imka χm
*

m
∑ )( einkaχn

n
∑ )dτ∫

=
ei(n−m )ka

m
∑ χm

* Hχn dτ∫
n

∑
ei(n− m )ka

m
∑ χ m

* χn dτ∫
n

∑

=
N(eikaβ + α + e−ikaβ )

N

β
a

n
m = n-1   n   n+1

β = χ n−1
* Hχ ndτ∫

α = χn
* Hχ ndτ∫

β = χ n+1
* Hχn dτ∫

E = α + 2βcos ka coska =
eika + e−ika

2

E = α + 2βcos ka

k

E

π/a−π/a� Owing to the periodicity,
   　we only consider

−π < ka < π　or
　 < k < 

(2) Owing to β < 0, 
Maximum of E is (at k＝ π/a ) E ＝
Minimum of E is (at k＝ 0 ) E ＝

(3) As a whole, the energy band has the bandwidth,  

0
α

−π/a π/a



E = α + 2βcos ka β
a

φ = einkaχn
n

∑
(4) Make a ring.
(Otherwise, "edge state" 
appears.)

k =

When the total atoms are N, N-the atom＝0-th atom, so

eiNka ＝1 → Nka＝2πn　(n：integer) → 　

k

E

π/a−π/a 0

Periodical 
boundary condition

Arranged with a fine interval

The interval is Δk =

  Very fine for large N.
→Nearly continuous (Energy band)

1 2 3 4N=0 (5)　　　　　　　　

k＝ 0 leads to
k＝ π/a leads to

φ = χ 0 + χ1 + χ2 + χ 3 + ....

φ = einkaχn
n

∑
E = α + 2βcos ka

φ =

k

E

π/a−π/a 0

αー2β

α＋2β

α All intervals have nodes.
  → Completely antibonding

Completely bonding

The state next to k=0 has extra　　　     phase.  When rotated around the solid,
the phase shifts by 2π.  So the whole solid has only one node.

e
i 2π

N

k

E

π/a−π/a 0

(6) Total number of levels

2× π
a

2π
Na

=

from −π/a to π/a

level interval

k

E

π/a−π/a 0

(7) For N electrons

2
2kF

2π
Na

= N kF =→

kF=π/2a-π/2a

for half-filled.

H H

H H H

H

H

H

H
Polyacetylene without bond alternation

N atoms → N energy levels

k

E

π/a−π/a 0

(8) For 2N electrons

2
2kF

2π
Na

= 2N kF =→

All states are occupied

Two electrons, ↑and↓, enter in one atomic orbital χ.　



k

E

π/a−π/a 0

(9) For N＝6

E = α + 2βcos ka =α + 2βcos
2π
6

nk =
2πn
Na

=
2πn
6a

leads to

０, ±π/3, ±2π/3, π

E=

π/3

2π/3

πorbitals (Hückel method) for benzene

−π/3

-2π/3

Similarly, we can calculate Hückel molecular orbitals for N-carbon rings.

α＋2β
α＋β

αーβ

αー2β

α＋2β α＋β　α＋β αーβ   αーβ αー2β

Excise  Hückel Molecular Orbital of Cyclopentadienyl ..-
Cyclopentadienyl anion (right) is pentagon 
and has delocalized negative charge.
Calculate the energy levels from the 
equation of the tight-binding band,    .
（１） When N=5, k takes the values of  0、±A、±B.  Show A and B.
（２） Obtain the energy levels.
　　　Use cos(2π/5)＝cos72°＝0.309、 cos(4π/5)＝cos144°＝ -0.809.
（３） Calculate energies of the anion, the radical and the cation.

E = α + 2βcos ka

k

E

0 ka

π/23π/2

π
eika =x+iy 
=cosθ+ιsinθ

x

y

k

E

0
x

y

π

n=4 n=6

π/3

2π/34π/3

5π/3

0 ka

π/23π/2

π

x

y

π/4

n=8

N=4n uses nonbonding level
→　No stabilization

N=4n +2 does not have nonbonding
→　stabilization　→　 Hückel role

Nonbonding

E = α + 2βcos ka
Free electron approximation

(1) Simple free electron approximation derived from
the first principle of quantum mechanics.
(2) Electrons in metals, particularly the energy and 
momentum distribution, are investigated starting from
a large number of free electrons.
(3) Distribution of electrons at finite temperatures are 
discussed in view of the Fermi statistics:
statistical mechanics. 



E =
h2k2

2m

E

parabola

k∝p

p=hkp=ーhk

right bound electronleft bound electron

０

Wave number　k＝2π/λ is inverse of the wavelength.
The number of waves in unit× 2π length.

Free electron in three dimension.
Schrödinger equation is,

E =
px

2 + py
2 + pz

2

2m
+V

φφ
∂
∂

∂
∂

∂
∂ EV

zyxm
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Eigenfunction (solution) for V＝0 is φ(x, y,z) = ei(kx x +k y y +kz z )

Eignevalue (energy) is E =

E

kx
ky

 We cannot depict  kz 

  at the same time.

Instead of an infinite space, consider a box with a finite length L,
and the x=L edge is connected to x=0.
(Otherwise, the edge generates a 
"surface" state.)
φ(x+L, y, z)＝φ(x, y, z)

L
x=0 x=L

�

x=0 x=L

eikx L =1 → kxL=2πn → kx =

(n：integer)
Similarly for y, z,

kx =
2π
L

nx ky =
2π
L

ny kz =
2π
L

nz

(Consider a cube with L edges.)
Periodical boundary condition

kx or
ky or
kz

2π
L

E =
h2

2m
(kx

2 + ky
2 + kz

2 )

2π
L

Interval of energy levels
 → continuous for large  L.
 → Energy band　

Points on the sphere
have the same energy.

Fill N electrons according to the
Pauli's exclusion principle.
Starting from the origin with the
minimum energy, to the inside
of a sphere with radius k=√kx

2+ky
2+ky

2

Fermi energy

Fermi surface



2

4π
3

k 3

(2π
L

)3
= N

Volume of a sphere with radius k is

Interval of states (3D)

One energy level has two electrons 
with ↑ and ↓ spins

V = L3where

kxkF

E

2
F

2

F 2
k

m
E =

Electron with the highest energy
(Fermi energy) is
kF

2=kx
2+ky

2+ky
2

×==
m

k
m

E
22

2
2
F

2

F

is solved as for N to give,

N =
V

3π 2 ×

= N

Differentiate as for E, and the number of energy levels 
per unit energy (density of states or states density) is

D(E) =
dN
dE

=

kx
kF

E

EF =
h2

2m
kF

2
E

D(E) =
3
2

N
E

or

D(E)∝E1/2

E
E+dE

D(E)

D(E) is the number 
of levels in between
E and E+dE.

Sphere

Count energy levels
for each energy interval.

Another derivation of states density

kx

ky

kz

E E+dE

dN is the number of states in between E and E+dE.

2
4πk2dk

(2π
L

)3
= dN

Surface of the sphere

Interval of the states in 3D
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= より

2
1

2 )2( mEk =
The same 
conclusion

Two-dimensional metal
E =

h2

2m
(kx

2 + ky
2) = const. 　leads to kx

2＋ ky
2 ＝kF ＝ const.

ky

kx

kz

kx, ky

E

EF

kF-kF
Fermi surface = cylinder

→　円

Occupied

2
πk 2

(2π
L

)2
= N

Area of the circle

N =
L2

2π
k2 = D(E) =

dN
dE

=

E

EF

D(E)



Fermi statistics: only one electron can occupy a state. 
Ci

Occupied by Ni electrons

E

D(E)

Ni electrons are in the Ci states with energy E. 
We cannot distinguish Ni electrons, so that the statistical
weight is the number to choose Ni from Ci:

Wi =
Ci!

Ni!(Ci − Ni)!The definition of entropy in statistical mechanics is

S = kB lnW = kB ln Wi
i

∏ = kB lnWi
i

∑ = kB ln
i

∑ Ci!
Ni!(Ci − Ni)!

= kB (Ci lnCi − Ni ln Ni − (Ci − Ni)ln(Ci − Ni))
i

∑

ln N!= N ln N − NStirling' equation

The realized distribution of Ni minimizes the Gibbs free energy
　　F=E-TS-μN　where  E=ΣNiE i、N=ΣNi .
So differentiation of F as for Ni is zero to give,

∂F
∂Ni

= Ei + kBT (ln Ni − ln(Ci − Ni)) −μ = 0

Ci − Ni

Ni

=
Occupation

Fermi-Dirac distribution1

0
f(E)

EF

E

T=300 K
T=0 K

T=3000 K

When T=0:
f (E) =

1
e−∞ +1

=

f (E) =
1

e+∞ + 1
=

E < μ

E > μ

EF = μ ：chemical potential

When T≠0, f(E) changes 
continuously from 1 to 0
with the width of kBT.

50000 K for metals

f (Ei) =
Ni

Ci

=

E

D(E)

×

The real electron number is D(E)×f(E)

Ci ×
Ni
Ci

= Ni

10
f(E)

EF

E

=

E

At T≠0, these electrons
are thermally excited.

N

EF

kBT
≈

50000K
300K

>100 → Only <1% electrons are 
thermally excited.

Internal energy of metal electrons

U(T ) = (E − EF)
0

∞∫ D(E ) f (E)dE
Measured from EF = 0.Specific heat

CV =
∂U
∂T

= (E − EF)
0

∞∫ D(E)
∂f (E )

∂T
dE

T appears only in f(E).

f (Ei) =
1

e
Ei − μ
kBT +1

=
1

ex +1 x =
E − μ
kBT

where gives

∂f
∂T

= dx =
dE
kBT 1

0
f(E)

EF

E

E

∂f(E)
 ∂T

∂f(E)
 ∂T is nonzero only near EF.

so that approximated to be
D(E)〜D(EF).



CV = D(EF) (E − EF)
0

∞∫ ∂f (E)
∂T

dE

= D(EF) (kBTx)
0

∞∫ x
T

ex

(ex +1)2 kBTdx

= kB
2TD(EF) x2

0

∞

∫ ex

(ex +1)2 dx π2/3 from table of integrals

=

γ

Cv＝γT
Specific heat of metal electrons

or using TF: Fermi temperatureD(EF) =
3
2

N
EF

=
3
2

N
kBTF

Cv =
π 2

3
3
2

N
kBTF

kB
2T =

π 2

2
NkB

T
TF

=
π 2

2
nR

T
TF

Gas constant

T

If free electron is an ideal gas, according to the Dulong-Petit theorem,
the specific heat is Cv=3R.  However, it is less than

T
TF

≈
300K

50000K
≈10−2

Owing to the Fermi distribution, only kBT electrons near
EF are excited, and contribute to the specific heat.

Metal electrons are "Fermi" particles!

Fermi gas cf. Classical gas

At low temperatures (<50 K), the lattice 
vibration (photon) decays as Cv∝T3 so that
Cv＝γT＋βT3

free electron phonon

Cv

T
= γ + βT 2

Cv

T

Only phonons
at high T

Cv/T

T2γ
Experimental estimation of γ→D(EF) from 
the low-temperature (<4 K) specific heat.

Bose-Einstein statistics

Insert Ni particles in Ci levels, allowing
any particles in the same level.

The number to arrange Ni
particles and Ci-1 partitions.

Ci

Wi =
(Ci + Ni −1)!
Ni!(Ci −1)! Ci＋Ni ー1

Ci-1→ Ci gives
lnWi = (Ci + Ni)ln(Ci + Ni) − Ni ln Ni −Ci ln Ci

Put this in F=E-TS-μN, and differentiation as for Ni is put zero to
∂F
∂Ni

=

Ci + Ni

Ni

= e
Ei − μ
kBT

=0

f (Ei) =
Ni

Ci

= Bose-Einstein statistics

T→0
　Eiーμ > 0　e＋∞→ ＋∞　f(E) →0
　Eiーμ ＝ 0　e0→ 1　　　f(E) → ＋∞

μ

E

f(E)All particles go to the lowest level.
Eiーμ → hω gives f (Ei) =

1

e
hω

k BT −1
Planck distribution

Phonon (lattice vibration) is Bose-Einstein particle.
Photon (light) is the same → black body

f (Ei) =
1

e
Ei − μ
kBT ±1

＋　
ー　

Quantum statistics



E-μ>>kBT leads to elarge>>1 f (Ei) = e
−

Ei − μ
kBT

Boltzmann (classical) distribution 
Classical distribution

n1

n2

n3

n4

W =
N!

n1!n2!n3!⋅ ⋅ ⋅

Each i-th state has ni particles, with the 
total N=Σni particles.
The statistical weight is

so
lnW = ln

N!
n1!n2!n3!⋅ ⋅ ⋅

= N lnN − ni ln ni
i

∑

ln N!= N ln N − N
Stirling's equation

Put this in F=E-TS-μN　(S=kBlnW)

F = Eini − kBT (N ln N − ni ln
i

∑ ni)
i

∑ − μ ni
i

∑

Differentiation as for ni is zero to give,
∂F
∂Ni

=

so
f (Ei) = ni = Boltzmann sidtribution

E

f(E)
Fermi distribution：Particles with half-integer spin
 quantum number：electron, proton, neutron, 3He

Boltzmann distribution：classical particles

Bose distribution：Particles with integer spin quantum number：
Light (photon), Lattice vibration (phonon), 4He

0
1 f (Ei) =

1

e
Ei − μ
kBT +1

f (Ei) =
1

e
Ei − μ
kBT −1

f (Ei) = e
−

Ei − μ
kBTμ

Everything approaches to Boltzmann at Ei-μ>>kBT.

=0

One-dimensional metal

E =
h2kx

2

2m
= const. leads to　kx＝kF ＝ const.

(No momentum for ky, kz
＝does not move)

ky

kx

kz

kx

E

EF

kF-kF 0

Occ.
Unoccupied

Fermi surface consists of a pair of planes. 
Unoccupied


