X線散乱強度

X線回折の回折点の位置だけでなく強度を議論するには・・・ 波動としてみたX線

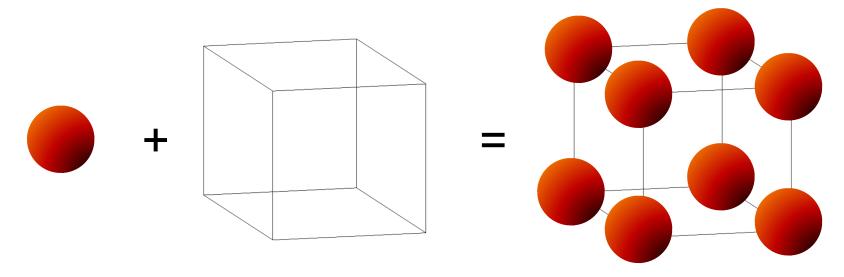
3つのpoint

X線の散乱振幅は電子密度分布のフーリエ変換で表される (強度は散乱振幅の二乗)

$$E(\mathbf{s}) = \int \rho(\mathbf{r}) \exp(i \, \mathbf{s} \cdot \mathbf{r}) d\mathbf{r} = \Im[\rho(\mathbf{r})]$$

原子, 分子, 単位格子, 結晶子など, 幾つかの要素が組み合わ さってできる電子密度分布は, 各要素の空間分布関数の畳み込 みで表される $\rho(\mathbf{r}) = \rho_1(\mathbf{r}) * \rho_2(\mathbf{r})$

二つの関数の畳み込みのフーリエ変換は、各々の関数のフーリエ変換の積に等しい

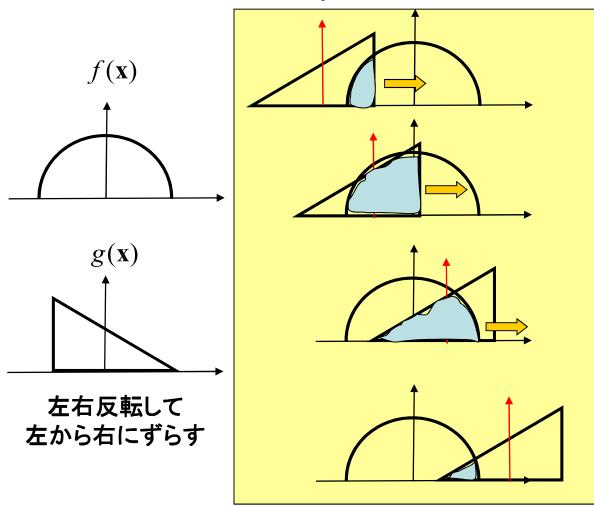

$$\Im[f(\mathbf{r}) * g(\mathbf{r})] = \Im[f(\mathbf{r})]\Im[g(\mathbf{r})]$$

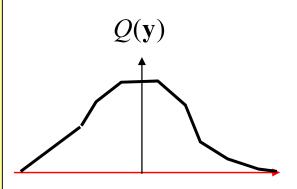
実際の材料のX線回折強度分布を計算するには、空間中の電子密度分布が数式で表せればよい・・・

しかし、実際の材料の中の電子密度分布は複雑・・・

原子,分子,結晶単位格子,結晶子など,各々の構造要素の空間分布関数は数式で記述できる

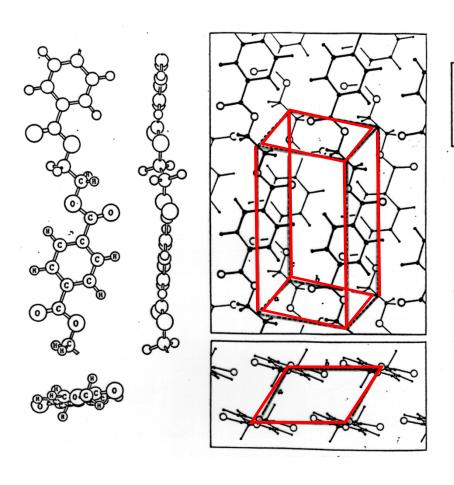
それぞれの空間分布関数をフーリエ変換し、その積を求めれば それが、散乱強度分布になる!



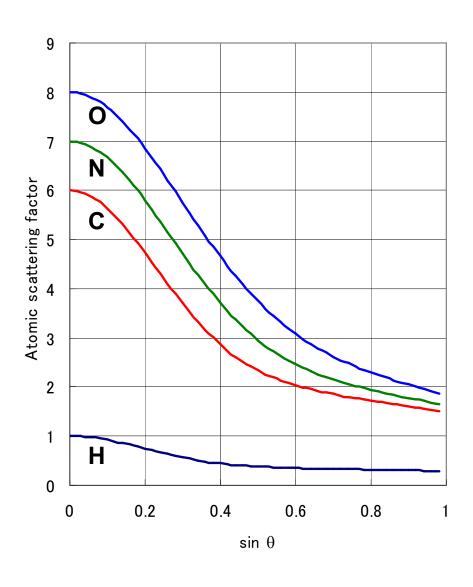

Convolution

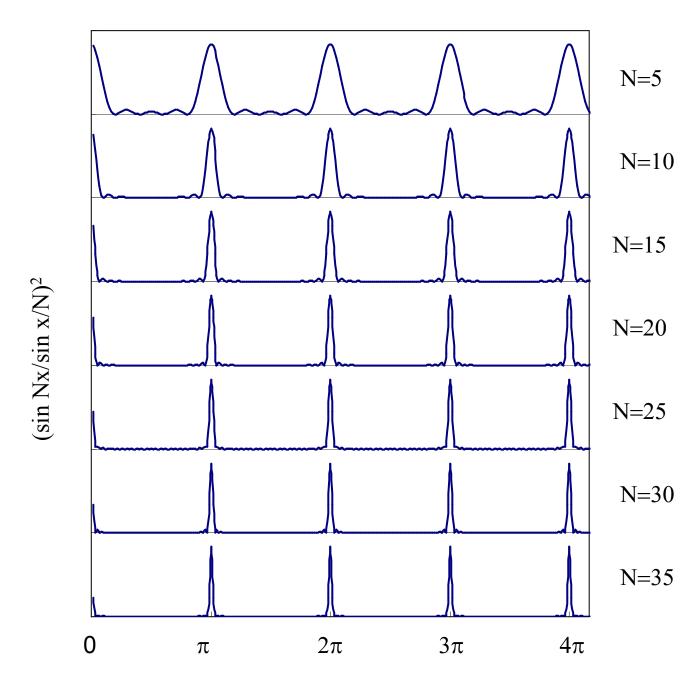
畳み込み(Convolution)

二つの関数 $f(\mathbf{x}), g(\mathbf{x})$ に対し

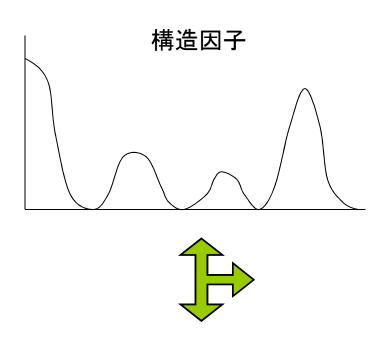

$$Q(\mathbf{y}) = \int f(\mathbf{x})g(\mathbf{y} - \mathbf{x})d\mathbf{x}$$

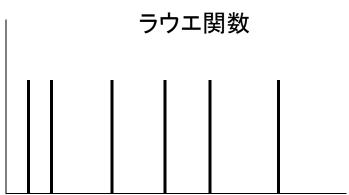
重なりの部分の面積が ずらす位置に対して どう変化するか?


単位格子と原子座標 Poly(ethylene terephthalate)

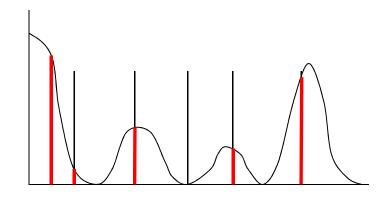

a= 4.52 Å	$\alpha = 101^{\circ}$
b= 5.98 Å	β = 118°
c=10 _. 77 Å	r = 111°
H.y(G) (1)
, [9
É	9-99
®.⇔¢	D CO PRO
@`	G G
Θ) W
@ - @	
(9)	
(H ₂)—(C	7-0

	Х	Y	Z
Cı	0.1356	-0.5382	0.4308
C2	-0.1808	-1.0764	2.5848
C ₃	0.0904	-0.5382	4.2003
C4	-0.3616	-1.5548	4.8680
C ₅	0.5876	1.0764	4.7927
Ce	0.3616	1.5548	5.9020
C7	-0.5876	-1.0764	5.9773
Ca	-0.0904	0.5382	6.5697
C,	0.1808	1.0764	8.1852
C ₁₀	-0.1356	0.5382	10.3392
01	0.4520	0.0000	2.0463
O2	-0.3616	-2.4518	2.2079
03	0.3616	2.4518	8.5621
O ₄	-0.4520	0.0000	8.7237
H1	-0.7232	-1.9136	-0.2154
H ₂	0.3842	-1.3455	-0.2477
H ₃	-0.9040	-2.9900	4.4157
H4	0.8136	1.9734	4.1465
H ₅	-0.8136	-1.9734	6.6235
He	0.9040	2.9900	6.3543
H7	0.7232	1.9136	10.9854
He	-0.3842	1.3455	11.0177
C	0.1356	0.5382	-0.4308


原子散乱因子(Atomic scattering factor)



ラウエ関数



構造因子とラウエ関数

観測される各結晶面の回折強度

