第9回

光ファイバ伝送特性(2)

2013年12月3日(火)

光分散補償器

加法性雑音伝送路

2013年度

光通信システム

$$f(t) * g(t) = \int_{-\infty}^{\infty} f(\tau)g(t-\tau)d\tau$$

$$f(t) = \delta(t)$$
 のとき、 $f(t) * g(t) = \int_{-\infty}^{\infty} \delta(\tau)g(t-\tau)d\tau$
 $= g(t) \int_{-\infty}^{\infty} \delta(\tau)d\tau = g(t)$

すなわち、デルタ関数との畳み込み積分は、g(t) (線形システムの場合は インパルス応答)を意味する。

^{2013年度} 光通信システム **畳み込み積分を周波数領域で見ると・・・**

2013年度 光通信システム

線形受信フィルタ

受信フィルタ出力

$$y(t) = \int_{-\infty}^{\infty} h(\tau)x(t-\tau)d\tau = g_0(t) + n(t)$$

フィルタ出力パルス信号 フィルタ出力雑音

● 受信フィルタの出力SNR

$$\eta = \frac{|g_0(T)|^2}{E[n^2(t)]}$$
時刻TT

時刻Tで出力SNRを最大にする受信フィルタ?

整合フィルタ(時間領域)

 $H_{opt}(f) = kG^*(f)e^{-j2\pi fT}$

🛑 整合フィルタ(時間軸)

$$h_{opt}(t) = \int_{-\infty}^{\infty} H_{opt}(f) e^{j2\pi ft} df = k \int_{-\infty}^{\infty} G^*(f) e^{-j2\pi f(T-t)} df$$

ここで、

$$G^{*}(f) = \int_{-\infty}^{\infty} g(t)e^{j2\pi ft}dt = \int_{-\infty}^{\infty} g(t)e^{-j2\pi(-f)t}dt = G(-f)$$

ニ 与式

$$=k\int_{-\infty}^{\infty}G(-f)e^{j2\pi(-f)(T-t)}df = kg(T-t)$$

時間軸で時間反転させたインパルス応答

分散補償ファイバによる等化

分散補償ファイバ

屈折率分布	MFD (μm) @ 1550nm	波長分散 (ps/nm/km)	分散スロープ (ps/nm/km) @ 1550nm	性能指数 (ps/nm/dB) @ 1550nm
	5.0	-70 ~ -90	+0.08	200 ~ 250
<u> </u>	5.0	-70 ~ -90	+0.08	200 ~ 250
	4.5	-100~-135	-0.2~-0.5	200~300
RDF 5.8		-15.6	-0.046	62
	5.0	-100~-300	-0.15	300 ~ 400

和田 朗, "光ファイバー研究開発の最新動向", O plus E, pp.68-73 (1999).

2013年度 光通信システム ラティス型フィルタを用いた分散補償器

K. Takiguchi, K. Okamoto, T. Goh, T. Saida and M. Itoh, in Proc. ECOC2000, We. P. 19 (2000).

8チャネル40Gbps WDM用PLC型分散スロープ補償器

分散補償特性

K. Takiguchi, K. Okamoto, T. Goh, T. Saida and M. Itoh, in Proc. ECOC2000, We. P. 19 (2000).

2013年度 光通信システム Virtually-Imaged Phased Array (VIPA)

H. Ooi, K. Nakamura, Y. Akiyama, T. Takahara, T. Terahara, Y. Kawahata, H. Isono, and G. Ishikawa, J. Lightwave Technol., vol.20, No.12, pp.2196-2203 (2002).

VIPAの分散特性

H. Ooi, K. Nakamura, Y. Akiyama, T. Takahara, T. Terahara, Y. Kawahata, H. Isono, and G. Ishikawa, J. Lightwave Technol., vol.20, No.12, pp.2196-2203 (2002).

^{2013年度} _{光通信システム}分散マネジメント伝送路とVIPAを用いた40Gbps伝送結果

H. Ooi, K. Nakamura, Y. Akiyama, T. Takahara, T. Terahara, Y. Kawahata, H. Isono, and G. Ishikawa, J. Lightwave Technol., vol.20, No.12, pp.2196-2203 (2002).

^{2013年度} 光通信システム **偏光度モニタを用いたPMD補償器**

磯村, ラスムッセン, 大井, 秋山, 石川, 2003年信学ソ大, B-10-124 (2003).

PMD-波長分散同時自動補償実験

大井, ラスムッセン, 高原, 中村, 磯村, 福士, 石川, 2003年信学ソ大, B-10-121 (2003).

電気分散補償技術

2013年度 光通信システム EDC (Electronic Dispersion Compensation)技術(1)

FIR (Finite Inpulse Response)フィルタで構成することが多い

FIRフィルタ

FIRフィルタの伝達関数

$$\frac{Y(z)}{X(z)} = H(z) = b_0 + b_1 z^{-1} + b_2 z^{-2} + \dots + b_{N-1} z^{-(N-1)}$$

ここで $z = e^{sT_s}$ であり、s はラプラス変換の変数で、標本化周期Ts ごとに

遅延している状態(遅延演算子)に相当する。

上式のインパルス応答は、逆z変換で求まり、

$$h(n) = \mathbb{Z}^{-1}[H(z)] = \sum_{i=0}^{N-1} b_i \delta(n-i) = y(n)$$

インパルス応答はFIRフィルタの係数に等しい。

2013年度

光通信システム

