光画像工学 Optical imaging and image processing

講 義 名 光画像工学

開講学期後学期単位数2-0-0

担当教員 〇山口雅浩 教授:

大岡山キャンパス 学術国際情報センター国際棟306号室(内線3276)ポスト番号I7-6 すずかけ台キャンパス S1棟312-1号室(内線5137),ポスト番号S1-17

E-mail: yamaguchi.m.aa@m.titech.ac.jp

【講義の目的】

画像のディジタル処理に必要とされる光学の知識として、フーリエ変換と光の干渉・回折や結像 理論の関係について述べるとともに、線形イメージング系を中心としたディジタル画像処理の基 本的な知識を講義する。また、映像機器、光計測、医用画像等の分野において、これらの理論が どのように利用されているかを紹介する。

【教科書·参考書等】

J. W. Goodman, "Introduction to Fourier Optics," McGraw-Hill (New York)

W. K. Platt, "Digital Image Processing," John Wiley & Sons 他

その他

A. Rosenfeld and A. C. Kak, "Digital Picture Processing," 2nd Edition, Vol.1, 2, Academic Press, Inc

吉村武晃「光情報工学の基礎」コロナ社

黒川隆志、滝沢國治「光情報工学」コロナ社

【関連科目・履修の条件等】

前期科目「ディジタル信号処理基礎論」を受講していることが望ましい。

【成績評価】

小テスト、レポート、講義時の演習、出席状況

Optical imaging and image processing

Autumn and winter semester, Units: 2-0-0

Professor Masahiro Yamaguchi

Objective

Based on the knowledge of the diffraction and interference of light, optical imaging theory, and two-dimensional Fourier transform, the fundamentals of optical imaging systems and digital image processing are described. The applications in image analysis, restoration and reconstruction are also introduced.

References

J. W. Goodman, "Introduction to Fourier Optics," McGraw-Hill (New York)

W. K. Platt, "Digital Image Processing," John Wiley & Sons

Also,

A. Rosenfeld and A. C. Kak, "Digital Picture Processing," 2nd Edition, Vol.1, 2, Academic Press, Inc

Prerequisite

1

2

Students are recommended to take "Fundamentals of Digital Signal Processing" before taking this class. (Not mandatory)

Evaluation: Homework and in-class exercises, Short exams (twice), class attendance Note

The class in 2012 is given in English. Send e-mail for appointment.

3

5

講義予定

※一部予定変更の可能性あり

第1回 イントロダクション
第2回 イメージングシステムの基礎知識(1)
第3回 イメージングシステムの基礎知識(2)
第4回 光学的イメージングの性質(1)
第5回 光学的イメージングの性質(2)
第6回 光学的イメージングの性質(3)
第7回 劣化画像の復元
第8回 画像再構成、計算イメージング
第9回 画像解析·画像認識
TBA (M1構想発表)
第10回 カラー画像(1)
第11回 カラー画像(2)
第12回 マルチスペクトル画像
第13回 3次元画像と立体像表示(1)
第14回 3次元画像と立体像表示(2)
第15回 ホログラフィー / 期末小テスト

What we will learn in this course

- Theoretical background of optical and digital image acquisition, processing, and display systems.
 - Ex. Digital Still Camera, Camcoder, Digital Television, Video systems, Image scanner, Displays, Printers, Microscopy, Optical measurement, Stereoscopic displays, holography
 - Imaging through lens system, Color imaging, Multispectral imaging, 3D imaging
- Keys to the typical techniques used in historical and latest image processing systems.
- Some recent R&D topics in optical imaging and image processing.

What we will NOT learn in this course:

- Details of image processing methods used in the practical imaging systems.
- Hardware implementation methods of digital image processing.
- Some nonlinear techniques; binary image processing, morphological image processing, ...
- Image coding and decoding methods.

1. Basics of imaging systems

- Introduction
- Linear imaging systems
- Mathematical characterization of images
- Fourier transform and imaging system
- Linear operators
- Image acquisition and digitization

1.1 Introduction

- Scope of this class
 - Linear imaging system
 - Linear, space-invariant imaging system
 - Imaging through lens system
 - Image processing system
 - Image restoration, reconstruction
 - Color imaging
 - 3D imaging

What is an imaging system?

8

6

General model of imaging systems

1.2 Radiometry and Photometry 1.2 放射量と測光量

V(λ): Spectral luminous efficiency of human vision 分光視感効率 (比視感度)

Maximum luminous efficacy @555nm $K_m = 683 \text{ lm} \cdot \text{W}^{-1}$ 最大視感度

21

10

Reflection, transmission, and absorption 光の反射,透過,吸収

Radiant and luminous quantities

- Radiant quantities: physical
- Luminous quantities: psychophysical, related to the stimuli to the human vision

Radiant quantities		Definition	Unit	Luminous quantities		Definition	Unit
Radiant Energy	Q _e	Energy emitted or transmitted from an object	J	Quantity of light	Q_{ν}	$\int \Phi_{v} dt$	lm∙s
Radiant flux	$\Phi_{\!_{e}}$	$\frac{dQ_e}{dt}$	W	Luminous flux	$ \Phi_{\nu} $	$K_m \int \Phi_e(\lambda) V(\lambda) d\lambda$	lm
Radiant exitance	M_{e}	$\frac{d\varPhi_e}{dA}$	W·m ⁻²	Luminous exitance	<i>M</i> _v	$\frac{d\Phi_v}{dA}$	$\lim_{2} m \cdot m^{-}$
Irradiance	E _e	$\frac{d\Phi_e}{dA}$	W⋅m ⁻²	Illuminance	E _v	$\frac{d\Phi_v}{dA}$	lx
Radiant intensity	I _e	$rac{d \Phi_e}{d \Omega}$	W·sr ⁻¹	Luminous intensity	I _v	$rac{d \Phi_{_{\!$	cd
Radiance	L _e	$\frac{d^2 \Phi_e}{dA d\Omega \cos \theta}$	$W \cdot m^{-2}$ $\cdot sr^{-1}$	Luminance	L_{ν}	$\frac{d^2 \Phi_{\nu}}{dA d\Omega \cos \theta}$	cd⋅m ⁻²

Ex., 40W Fluorescent Lamp: Quantity of light \cong 3000 lm, Luminance \cong 9000 cd·m⁻² Normal desktop irradiance \cong 300lx Luminous intensity of x W Incandecent lamp \cong x cd

1.3 Linear Imaging System

Image Processing System

Linear, shift-invariant filtering $g(x, y) = \iint h(x - x', y - y') f(x', y') dx' dy'$ = f(x, y) * h(x, y)

G(u, v) = H(u, v)F(u, v)

33

Image restoration, reconstruction

G(u,v) = H(u,v)F(u,v)

Imaging through lens system

g(x, y) = f(x, y) * h(x, y) + n(x, y)

 画像のぼけ Image blur 焦点はずれ Defocus レンズの収差 Lens aberration 回折限界 Diffraction limit 検出器の開口 Sampling aperture
 サンプリング Sampling
 歪 Distortion
 ノイズ Noise 35

Color image sensor

$$g_{j} = \int E(\lambda)S_{j}(\lambda)f(\lambda)d\lambda$$

37

Computed Tomography

X-ray absorption coefficient distribution f(x,y)Observed X-ray intensity $I(\theta,t)$ Observed X-ray intensity when no object present $I_0(\theta,t)$ Projection data $p(\theta,t)$

Time-sequential color image sensor

 $g_{j} = \int E_{j}(\lambda)S(\lambda)f(\lambda)d\lambda$