

MOSFET

1. MIS Diode

- Band Diagram
- 蓄積、空乏、反転、強反転すると、それ以上ゲート電圧を加えても空 乏層は拡がらない。
- C-Vカーブ(高周波C-V特性、低周波C-V特性、測定方法)

2. MOSFET

- 長チャネルMOSFETのID-VD特性
- Subthreshold特性
- Subthreshold Swing(集積回路としての電源電圧とThreshold Voltageの関係)
- 3. MOSFETの短チャネル効果、スケーリング則
- 4. MOSETの動作速度、等価回路

Kazuya Masu

SI単位系(MKSA単位系)

9
-

				- IUK UIIELP
組立単位	読み	単位	他の表記	基本単位による組立
速度				m/s
加速度				m/s ²
カ	Newton	N	kg∙m/s²	F=ma
エネルギー	Joule	J	kg∙m²/s²	J = N∙m
電流	Ampere	А		
電圧	Volt	V	J/C	m ² ·kg·s ⁻³ ·A ⁻¹
電力 or 仕事率	Watt	W	kg∙m³/s²	W = J/s
電荷	Coulomb	С	A∙s	s·A
磁束	Weber	Wb	V·s	m ² ·kg·s ⁻² ·A ⁻¹
磁束密度	Tesla	Т	Wb/m ²	kg⋅s-2⋅A-1
抵抗	Ohm	Ω	V/A	m ² ·kg·s ⁻³ ·A ⁻²
インダクタンス	Henry	Н	Wb/A	m ² ·kg·s ⁻² ·A ⁻²
容量	Farad	F	C/V	m ⁻² ·kg ⁻¹ ·s ⁴ ·A ²
$\mu = 4\pi \times 10^{-1}$	-7[H/m]	-(1/)	$36\pi) \times 10^{-9}$	E/m]

 $4\pi \times 10^{-1} [\pi/m] \epsilon_0 = (1/30\pi) \times 10^{-1} [F/m]$

Kazuva Masu

11

Kazuva Masu

MOSFET

TOKYO TECH-

Kazuva Masu

26

1. MIS Diode

- Band Diagram
- 蓄積、空乏、反転、強反転すると、それ以上ゲート電圧を加えても空 乏層は拡がらない。
- C-Vカーブ(高周波C-V特性、低周波C-V特性、測定方法)

2. MOSFET

- 長チャネルMOSFETのID-VD特性
- Subthreshold特性
- Subthreshold Swing(集積回路としての電源電圧とThreshold Voltageの関係)
- 3. MOSFETの短チャネル効果、スケーリング則
- 4. MOSETの動作速度、等価回路

短チャネル効果 28
短チャネル効果 微細化され、電界分布、電 位分布を一次元で近似でき なくなり生じる。
短チャネル効果によるデバイス特性の劣化 (1) V_{th} の変化 (V_{th} roll-off) (2) ソース・ドレインの耐圧劣化 (3) Subthreshold特性の劣化 \rightarrow Sの劣化 (4) ホットキャリア注入によるゲート酸化膜の劣化 \rightarrow チャネル高電界で加速されたキャリアがゲート 酸化膜に注入され、Vth変化、飽和特性を劣化さ せる。
Kazuya Masu

Kazuya Masu

такүа тесн

47

 ● デバイス寸法だけではなく、回路特性も予想可
● ただし、特性の優れた元デバイス(Parent Device)が 必要

			Circuit Parameters		
Device Para	amete	rs	Drain current	I _D	1/k
Channel length	L	1/k	Capacitance	$C_{ox} = \epsilon S/t$	1/k
Channel width	W	1/k	Gate delay time	C _{ox} V/I _D	1/k
Oxide thickness	t _{ox}	1/k	Consumption power per	gate V I _D	1/k ²
Junction depth	Xj	1/k	Chip area	$\mathbf{A}_{\mathbf{chip}}$	1/k ²
Depletion layer wid	th x _d	1/k	Power per unit area	V I _D /A _{chip}	1
Sub. doping conc.	NA	k	Line Resistance	R _L =p lentgh/S	k
Supply voltage	V	1/k	RC constant	R _L C	1
			Current density	J=I/S	k
			Electric field strength	Е	1

48

Scaling Parameters		Constant Electric Field	Constant Voltage	Quasi Constant Voltage
Dimension	L	1/k	1/k	1/k
Oxide thickness	t _{ox}	1/k	1/k ^{1/2}	1/k
Sub. doping conc.	N _A	k	k	k
Supply voltage	V	1/k	1	1/k ^{1/2}

0.35~0.5 μmデバイスまでは、定電界則(V_{DD}=5V)でスケーリング0.35~0.25μm以降は、定電界的要素も加味されている。

Kazuya Masu

スケーリング則の一般化

	Dimensional Scaling	Temperature Scaling
Scaling Quantity	Dimension	Temperature
Fundamental Equation	Poisson's Equation	Fermi-Dirac Distribution Function
Conservation Quantitiy	Electric Field or Potential Distributions	Mobile Carrier Distribution

スケーリンク則の一般

					- 70	KYD TECI
	Temperature Scaling		Dimensional Scaling ^{a)}		Combination Scaling	
Temperature T	1/θ ^{b)}		1		1/θ	
Dimension L , W , t_{ox}	1		1/λ ^{c)}		1/λ	
Voltage V	1/θ		1/κ ^{d)}		1/θκ	
Doping conc. N _A	1/θ		λ^2/κ		$\lambda^2/\Theta\kappa$	
$\boldsymbol{\phi}_{t} = \boldsymbol{\phi}_{bi} - \mathbf{V}_{sb}^{e)}$	1/θ		> 1/ĸ		> 1/θ κ	
Electric Field E	1/θ		λ/κ		λ/θκ	
Sub. Swing S ^{f)}	1/θ		1		1/θ	
Threshold voltage V _{th}	1/θ		>1/ĸ		1/θκ	
	Unsat.	sat.	Unsat.	sat.	Unsat.	sat.
Drain Current I _{DS} ^{g)}	θ_{μ}/θ^2	θ_v / θ^{h}	λ/κ^2	1/κ	$\theta_{\mu}\lambda/\theta^{2}\kappa^{2}$	θ _v /θκ
Gate delay $t_d = CV/I_{DS}$	θ/θ_{μ}	$1/\theta_{\rm v}$	κ/λ^2	1/λ	$\theta \kappa / \theta_{\mu} \lambda^2$	$1/\theta_v \lambda$
Power(CMOS) P=fCV ² /4 ⁱ⁾	θ_{μ}/θ^{3}	θ_v/θ^2	λ/κ^2	$1/\kappa^2$	$\theta_{\mu}\lambda/\theta^{3}\kappa^{2}$	$\theta_v/\theta^2\kappa^2$
Pd products Pt _d	1/0 ²	$1/\theta^2$	$1/\lambda \kappa^2$	$1/\lambda \kappa^2$	$1/\theta^2 \lambda \kappa^2$	$1/\theta^2 \lambda \kappa^2$

(sat.)

~2-3

a) G. Baccarani, et al. IEEE ED-31, 452 (1984) f) $S = (log_e 10)(kT/q)(1+C_D/C_{ox})$

b) θ : temperature scaling factor, θ =300K/77K =4 g) (unsat.)

c) λ : dimensional scaling factor, $\lambda = L(long)/L(short)$ d) κ : voltage scaling factor, κ =V(long)/V(hort) h) $\theta_v = v_{sat}(77K)/v_{sat}(300K) \sim 1.3$, $\theta_\mu = \mu (77K)/\mu$

(77K)

e) bi: the built-in potential of pn junction,

V_{sb}: the forward substrate voltage

51

 I_{DS} = (W/L) $\mu C_{ox}(V_G-V_{th})V_{DS}$

I_{DS}= k_sWC_{ox}(V_G-V_{th})v_{sat}

i) Frequency f is assumed to be the proportion Kazuya Masu

温度・寸法合成スケーリングによる0.1 µmMOSFET 52

49

TOKYO TECH-