平成 25 年度 理学系広域科目「集合と位相第一」 整列集合の比較定理

本稿では整列集合の比較定理を証明する. ただし, 講義中に証明を与えた定理は認めて用いることにする. 必要な定義や定理を復習した後, 比較定理の証明を行う.

 (X, \leq) を順序集合とし, x, y, a, b を X の元とする.

注意 以降, \leq を省略して, X を順序集合とよぶことが多い. また, X の任意の部分集合を, X 上の順序 \leq から定まる自然な順序によって順序集合と考える. \diamond

定義 14.1 (X, \leq) が整列集合であるとは、X の空でない任意の部分集合が最小元をもつことである。 \diamond

以下の定義や定理は講義中に詳しく解説した.

問 14.2 (X, \leq) が整列集合ならば、 (X, \leq) は全順序集合である. ♦

記号 14.4 $x \le y$ かつ $x \ne y$ であることを, x < y と書く. \diamond

定義 14.5 X の部分集合 $X\langle a\rangle := \{x \in X \mid x < a\}$ を, X の a による切片という. \diamond

問 14.6 a < b ならば、 $(X\langle b \rangle)\langle a \rangle = X\langle a \rangle$ である. \diamond

定理 14.7 $f: X \to X$ が順序を保つ単射であるとき, 任意の $x \in X$ に対し $x \le f(x)$ が成り立つ. \diamond

定理 14.8 (1) 任意の $a \in X$ に対し, $X \in X(a)$ は順序同型でない.

(2) 任意の $a,b \in X$ に対し, $a \neq b$ ならば $X\langle a \rangle$ と $X\langle b \rangle$ は順序同型でない. \diamond

 $(X, \leq), (Y, \leq)$ を整列集合とする.

問 14.9 $f: X \to Y$ が順序同型写像であるとき、任意の $a \in X$ に対し $f(X\langle a \rangle) = Y\langle f(a) \rangle$ が成り立つ. \diamond

次のような集合を考える.

 $X_1 := \{a \in X \mid (a, b) \in W \$ となるような $b \in Y$ が存在する $\}$

 $Y_1 := \{b \in Y \mid (a, b) \in W \$ となるような $a \in X \$ が存在する $\}$

まず、次の定理を証明する.

定理 14.10 (1) ある $a \in X$ に対し $X_1 = X(a)$ であるか, もしくは $X_1 = X$ である.

(2) ある $b \in Y$ に対し $Y_1 = Y(b)$ であるか、もしくは $Y_1 = Y$ である.

証明 (1) まず、「任意の $a \in X_1$ に対し、 $X\langle a \rangle \subset X_1$ である」・・・(*) ことを示す. 任意に $a \in X_1$ をとる. X_1 の定義より、 $(a,b) \in W$ となるような $b \in Y$ が存在する.つまり、ある $b \in Y$ と、ある順序同型写像 $f: X\langle a \rangle \to Y\langle b \rangle$ が存在する.任意に $x \in X\langle a \rangle$ をとる.問 14.6 と問 14.9 より、

$$f(X\langle x\rangle) = f((X\langle a\rangle)\langle x\rangle) = (Y\langle b\rangle)\langle f(x)\rangle = Y\langle f(x)\rangle$$

であるから, f の $X\langle x\rangle$ への制限は $X\langle x\rangle$ から $Y\langle f(x)\rangle$ への順序同型写像である. よって, $(x, f(x)) \in W$ であるから, $x \in X_1$ である. 従って, $X\langle a\rangle \subset X_1$ である. 以上で, (*) が示された.

もし $X_1=X$ であれば明らかに成り立つ. そこで, $X_1\neq X$ であるとしよう. $X-X_1\neq \varnothing$ であるから,X が整列集合であることより, $a_1:=\min(X-X_1)$ が存在する.このとき, $X_1=X\langle a_1\rangle$ であることを証明する.任意に $x\in X\langle a_1\rangle$ をとる.もし $x\in X-X_1$ ならば, a_1 の定め方から $a_1\leq x$ であり, $x< a_1$ であることに矛盾する. よって, $x\in X_1$ である. ゆえに, $X\langle a_1\rangle\subset X_1$ となる. 任意に $x\in X_1$ をとる. $a_1\leq x$ と仮定する. もし $x=a_1$ ならば, $x=a_1\in X-X_1$ となり, $x\in X_1$ であることに矛盾する. もし $a_1< x$ ならば $a_1\in X\langle x\rangle$ である. 一方, $x\in X_1$ と (*) より, $X\langle x\rangle\subset X_1$ となる. よって, $a_1\in X\langle x\rangle\subset X_1$ となり, $a_1\in X-X_1$ であることに矛盾する. 従って, $x<a_1$,すなわち $x\in X\langle a_1\rangle$ でなければならない. ゆえに, $X_1\subset X\langle a_1\rangle$ である. 以上より, $X_1=X\langle a_1\rangle$ であることが示された.

(2)(1)と全く同様にして証明される.□

以上の準備の下で、次の定理を証明する.

定理 14.11 (整列集合の比較定理) 次の $\mathbf{0}$, $\mathbf{0}$, $\mathbf{0}$ のいずれか $\mathbf{1}$ つ, しかも $\mathbf{1}$ つだけが必ず成り立つ.

- **●** *X* と *Y* が順序同型である.
- ② ある $b \in Y$ に対し, $X \in Y(b)$ が順序同型である.
- **3** ある $a \in X$ に対し, $Y \in X(a)$ が順序同型である.

証明 (I) lacktriangle, lacktriangleのいずれかが成り立つこと:まず, X_1 と Y_1 が順序同型であることを証明する.写像 $f: X_1 \to Y_1$ を次のように定める.任意に $a \in X_1$ をとる. X_1 の定義より,a に対し $(a,b) \in W$ となるような $b \in Y$ が存在する.このとき Y_1 の定義から $b \in Y_1$ であり,定理 14.8(2) よりこのような $b \in Y$ は唯 1 つである.そこで,f(a) := b と定める.この写像 $f: X_1 \to Y_1$ が全単射であることを示す.任意に $b \in Y_1$ をとる. Y_1 の定義より,b に対し $(a,b) \in W$ となるような $a \in X$ が存在する.このとき X_1 の定義から $a \in X_1$ であり, $a \in X_1$ であり, $a \in X_1$ であり, $a \in X_1$ であり, $a \in X_1$ である.よって, $a \in X_1$ である.また, $a \in X_1$ であり, $a \in X_1$ であり, $a \in X_1$ である.よって, $a \in X_1$ である.また, $a \in X_1$ であり, $a \in X_1$ である.また, $a \in X_1$ であり, $a \in X_1$ である.よって, $a \in X_1$ である.また, $a \in X_1$ である.第像 $a \in X_1$ が順序同型写

像であることを示す. 任意に $a,a' \in X_1$ をとる. $a \le a'$ であるとする. もし a = a' ならば f(a) = f(a') である. そこで, a < a' であるとする. $a' \in X_1$ であるから, 順序同型写像 $\varphi: X\langle a'\rangle \to Y\langle f(a')\rangle$ が存在する. $\varphi(a) \in Y\langle f(a')\rangle$ であるから $\varphi(a) < f(a')$ であり, 問 14.6 と問 14.9 より

$$\varphi(X\langle a\rangle) = \varphi((X\langle a'\rangle)\langle a\rangle) = (Y\langle f(a')\rangle\langle \varphi(a)\rangle) = Y\langle \varphi(a)\rangle$$

となる. よって, $X\langle a\rangle$ と $Y\langle \varphi(a)\rangle$ は順序同型であり, $(a,\varphi(a))\in W$ となる. 従って, f の定義より $f(a)=\varphi(a)$ であり, $f(a)=\varphi(a)< f(a')$ となる. ゆえに, f は順序を保つ. 同様に, $f^{-1}:Y_1\to X_1$ も順序を保つので, f は順序同型写像である. 以上より, X_1 と Y_1 は順序同型である.

 X_1 と Y_1 が順序同型であることと、定理 14.10 とを合わせると、 $\mathbf{0}$ 、 $\mathbf{2}$ 、 $\mathbf{3}$ 、もしくは、 $\mathbf{3}$ ある $a \in X, b \in Y$ に対し、 $X\langle a \rangle$ (= X_1) と $Y\langle b \rangle$ (= Y_1) が順序同型である.

のいずれかが成り立つ. もし�が成り立つとすると, $(a,b) \in W$ となり, $a \in X_1$ かつ $b \in Y_1$ となる. すると, $a \in X\langle a \rangle$ かつ $b \in Y\langle b \rangle$ となり矛盾が生じる. つまり, � は決して成り立たない. 以上より, ①, ②, ③のいずれかが成り立つ.

(II) $m{0}$, $m{2}$, $m{3}$ のどの2つも同時には成り立たないこと: $m{0}$ と $m{2}$, $m{0}$ と $m{3}$ が同時に成り立つとすると、それぞれYと $Y\langle b \rangle$, Xと $X\langle a \rangle$ が順序同型となる。これは定理 14.8(1) に矛盾する。 $m{2}$ と $m{3}$ が同時に成り立つとすると、 $\bf{2}$ つの順序同型写像

$$g: X \to Y\langle b \rangle, \quad h: Y \to X\langle a \rangle$$

が存在する. $i:Y\langle b\rangle \to Y, j:X\langle a\rangle \to X$ を包含写像とすると、合成写像 $\psi:=j\circ h\circ i\circ g:X\to X$ は順序を保つ単射である. 一方、 ψ の像は $X\langle a\rangle$ に含まれるから、 $\psi(a)< a$ である. これは定理 14.7 に矛盾する. 以上より、 \P 、 \P 0 のどの 2 つも同時には成り立つことはない. \square