
Dominant Strategy（支配戦略）  

Definition 8.B.1: (strictly dominant strategy) 
In ΓN = [N = {0,1,…,I}, {Si}, {ui}],   
si ∈Si is a strictly dominant strategy for  i   
 if  ui(si, s-i) > ui(s’i, s-i)   ∀s’i ∈ Si - {si},  ∀ s-i ∈ S-i. 

   DC     C 
DC -2, -2 -10, -1 
 C -1, -10   -5, -5 

Player 1 

Player 2 Prisoner’s Dilemma  

Player 1:  “Confess” is the best strategy regardless of what 2 plays. 
Player 2:  Same.    → strictly dominant strategy（狭義支配戦略） 



Domination   

Definition 8.B.2: (strictly dominated strategy) 
 Let si, s’i ∈ Si. s’i  strictly dominates（狭義に支配する）  si    if 
  ui(s’i, s-i) > ui(si, s-i) ∀ s-i ∈ S-i. 
 If there exists at least one  s’i that strictly dominates si,  
  si is said to be strictly dominated. 

Note:  si is a strictly dominant strategy if it strictly dominates  

 all other strategies in Si. 

Example 8.B.1: 
1:  U, M strictly dominates D 
1 can eliminate  D. 

L R 
U  1, -1 -1,  1 

M -1,  1  1, -1 

D -2,  5 -3,  2 

Player 1 

Player 2 

2:  no domination 



Weakly Dominant Strategy 

Definition 8.B.3:   
Let si, s’i ∈ Si. s’i  weakly dominates（弱支配する）  si if 
 ui(s’i, s-i) ≥ ui(si, s-i)   ∀ s-i ∈ S-i 

 ui(s’i, s-i) > ui(si, s-i)   ∃ s-i ∈ S-i 

If there exists at least one  s’i that weakly dominates si,  
     si is said to be weakly dominated. 
si is a weakly dominant strategy（弱支配戦略）  
     if it weakly dominates all other strategies in Si. 

   L   R 
U  5, 1  4, 0 
M  6, 0  3, 1 
D  6, 4  4, 4 

Player 1 

Player 2 

Example 8.B.2: 
1:  D weakly dominates U, M 
2:  no weak domination 

1 can eliminate U and M  ???  



Iterated Deletion 

   DC   C 
DC   0,   -2  -10, -1 
 C  -1, -10    -5, -5 Player 1 

Player 2 Example 8.B.3: 
  1 is DA’s brother and  
  allow 1 to go free if both play DC. 

No domination for 1. 
2: C strictly dominates DC. 

Payoffs and rationality of both players are common knowledge 
 → 1 believes 2 eliminates  DC  and plays  C 
  (1 knows  2’s  payoffs and rationality) 
 → 1 plays  C  since  -5 > -10.  → (C, C)  

 Further iteration of deletion（逐次除去） is possible. 

Note:  Order of deletion does not affect the final outcome. 



Iterated Deletion of Weakly Dominated  Strategies 

Deletion of weakly dominated strategies  
     →  other players  play all strategies with positive probability 
     → C!  to  iterated deletion 

Delete M → L w-dom R → (D, L) 

   L   R 
U  5, 1  4, 0 
M  6, 0  3, 1 
D  6, 4  4, 4 

Example 8.B.2: 
1:  D weakly dominates U, M 
2:  no weak domination 

   L   R 
U  5, 1  4, 0 
D  6, 4  4, 4 Delete U → R w-dom L → (D, R) 

   L   R 
M  6, 0  3, 1 
D  6, 4  4, 4 

(Delete M & U  → (D, L)  or  (D, R)) 



Domination with Mixed Strategies 
Definition 8.B.4: (strictly dominated strategy with mixed strategies) 
Let σi, σ’i ∈ ∆(Si).   σ’i  strictly dominates  σ i if 
 ui(σ’i, σ -i) > ui(σ i, σ -i)  ∀ σ-i ∈ Πj≠i  ∆(Sj). 
σi is said to be strictly dominated  
 if there exists at least one σ’i that strictly dominates σ i,  
σi is a strictly dominant strategy  
 if it strictly dominates all other strategies in ∆(Si). 

   L   R 
U  10, 1    0, 4 
M    4, 2    4, 3 
D    0, 5  10, 2 

Pl. 1 

Pl. 2 
No domination for 1 and  2  
                in pure strategies. 
 
(1/2, 0, 1/2)  strictly dominates M. 



Domination with Mixed Strategies 

Proposition 8.B.1:  
si ∈Si  is strictly dominated in ΓN = [N = {0,1,…,I}, {∆(Si)}, {ui}]  iff  
there exists σ’i ∈ ∆(Si)  such that  
 ui(σ’i, s -i) > ui(s i, s-i)  ∀ s-i ∈ S-i = Πj≠i Sj. 

Note: ui(σ’i, σ-i) > ui(σ i, σ-i)  ∀ σ-i ∈ Πj≠i ∆(Sj) 

 iff   ui(σ’i, s-i) > ui(σi, s-i)  ∀ s-i ∈ Πj≠i Sj. 

Delete all strictly dominated pure strategies in ΓN.  

How do we eliminate mixed strategies ? 



Domination with Mixed Strategies 

Exercise 8.B.6:  
si ∈Si  is strictly dominated in ΓN = [N = {0,1,…,I}, {∆(Si)}, {ui}]   
 ⇒ any strategy that plays si with positive probability is  
       also strictly dominated. 

Can eliminate some dominated mixed strategies. 

Can eliminate further. 

   L   R 
U  10, 1    0, 4 
M    6, 2    6, 3 
D    0, 5  10, 2 

Pl. 1 

Pl. 2 
Neither U nor D strictly dominated; 
But  (1/2,0,1/2) is strictly dominated  
By M. 



Domination with Mixed Strategies 

Elimination of dominated strategies in  
  ΓN = [N={0,1,…,I}, {∆(Si)}, {ui}]  
1. Iteratively eliminate strictly dominated pure strategies. 
2. Let Su

i be the remaining pure strategy set of i 
3. Eliminate strictly dominated mixed strategies in ∆(Su

i) 



Rationalizable Strategies  

Definition 8.C.1:  
  In ΓN=[N={0,1,…,I}, {∆(Si)}, {ui}] , σi ∈∆(Si ) is a best response 
 for  i  to  σ-i   if ui(σi, σ-i) ≥ ui(σ’i, σ-i)   ∀σ’i ∈ ∆(Si). 
 
  Strategy  σi   is never a best response  
 if there is no  σ-i  to which  σi  is a best response. 

Note:  Strictly dominated  → never be a best response 
      never be a best response even if not strictly dominated  



Rationalizable Strategies（合理化可能戦略） 

b4  is not strictly dominated. 
But  b4  is never the best response. 
 a1  → b1 
 a2  → b2 
 a3  → b3 
 a4  → b1,  b3   

b1 b2 b3 b4 
a1 0, 7 2, 5 7, 0   0, 1 
a2 5, 2 3, 3 5, 2   0, 1 
a3 7, 0 2, 5 0, 7   0, 1 
a4 0, 0 0, -2 0, 0 10, -1 

Pl. 2 

Pl. 1 

_  denotes the best response 



Rationalizable Strategies 

Definition 8.C.2:  
   In ΓN=[{0,1,…,I}, {∆(Si)}, {ui}] , the strategies in ∆(Si) that 
   survives the iterated deletion of strategies that are never be a best 
   response are called i’s rationalizable strategies.  

Iterated elimination of “never be a best response” strategies 

Note:  Order of deletion does not affect  



Rationalizable Strategies 

b4  is never a best response  → eliminate  b4 
  → a4  is never a best response  → eliminate a4 
rationalizable strategies  → {a1, a2, a3}  for 1,  {b1, b2, b3} for 2 

b1 b2 b3 b4 
a1 0, 7 2, 5 7, 0   0, 1 
a2 5, 2 3, 3 5, 2   0, 1 
a3 7, 0 2, 5 0, 7   0, 1 
a4 0, 0 0, -2 0, 0 10, -1 

Pl. 2 

Pl. 1 

_    denotes best response 

Chain of justification: 
 (a2, b2, a2, b2, a2, … ),  (a1, b3, a3, b1, a1, b3, … ) 
 (a4, b4, nothing ) 



Rationalizable Strategies 

Existence of rationalizable strategies   ← existence of Nash eq. 
 many rationalizable strategies. 

set of rationalizable str.  
 ⊆  remaining strategies after iterative deletion of  
      strictly dominated strategies 
       strictly dominated  →  never be a best response  

Two-person games:  
set of rationalizable str.  
 =  remaining strategies after iterative deletion of  
      strictly dominated strategies 

Note: Three or more person games  →  not true  
  (OK for correlated str.) 



Assignments 

Problem Set 3 (due May 16):   

       Exercises (p.262)   8.B.1,  8.B.3,  8.B.6,  8.B.7 

Reading Assignments:   
 Text Chapter 8, pp.246-253 
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