Game（Matching Pennies）

Players：Who is involved ？
 Rules：Who moves when ？What do they know ？
 What can they do ？
 Outcomes：For each possible set of actions by the players， what is the outcome of the game？
 Payoffs（利得）：What are the players＇preferences（選好）
 （utility functions（効用関数））over the possible outcomes？

Example 7．B．1：Matching Pennies
Players：two players，denoted 1 and 2
Rules：Each player simultaneously puts a penny down， either heads up or tails up．
Outcomes：If the pennies match， 1 pays 1 dollar to 2 ； otherwise 2 pays 1 dollar to 1 ．

Game (Tick-Tack-Toe)

Players, Rules, Outcomes, Payoffs
Example 7.B.2: Tick-Tack-Toe
Players: two players, denoted X and O
Rules: The players take turns putting their marks (an X or an O) into as-yet-unmarked square. X moves first. All previous choices are observed.

Outcomes: The first player to have three of her marks in a row (horizontally, vertically, or diagonally) wins and receives 1 dollar from the other player. If no one succeeds in doing so after all nine boxes are marked, the game is a tie.
No payments are made.

Preferences

Preference are described by a utility function which assigns a utility level for each outcome.

Von Neumann-Morgenstern utility function
\rightarrow can take expected values (mixed strategy) $(\rightarrow$ Chapter 6)
payoff, payoff function
Examples 7.B. 1 and 7.B. $2 \rightarrow$ payoff $=$ amount of money
zero-sum games

Game (Meeting in New York)

Players, Rules, Outcomes, Payoffs
Example 7.B.3: Meeting in New York
Players: two players, Mr. T and Mr. S
Rules: The two players cannot communicate, and supposed to meet in N.Y. City. They have forgotten where.
Each must decide where to go.
Outcomes: If they meet each other, they get to enjoy each other's company. Otherwise, they are alone.
Payoffs: 100 dollars if they meet; 0 dollars otherwise

Each player's optimal action depends on what he thinks the other will do.

Extensive Form Game（展開形）（Matching Pennies B）

Example 7．C．1：Matching Pennies Version B

Players：two players，denoted 1 and 2
Rules：Player 1 puts her penny down first；then after seeing
her choice（head or tail），player 2 puts her penny down．
Outcomes：match， $1 \rightarrow 2$ 1dollar；otherwise $2 \rightarrow 1$ 1dollar

Extensive Form Game (Tick-Tack-Toe)

Example 7.C.2: The Extensive Form of Tick-Tack-Toe

Perfect Information（完全情報）

Matching pennies version B，Tick－Tack－Toe
Each player knows whole history of the game when she moves
\rightarrow perfect information

Information set（情報集合）
\rightarrow subset of particular player＇s decision nodes
When play has reached one of the decision nodes in the information set of a player，she does not know which one of the nodes in the information set she is actually at．

Perfect information \rightarrow every information set is a singleton．

Extensive Form Game (Matching Pennies B)

Example 7.C.1: Matching Pennies Version B
Rules: Player 1 puts her penny down first; then after seeing her choice (head or tail), player 2 puts her penny down.

Extensive Form Game (Matching Pennies C)

Example 7.C.3: Matching Pennies Version C Rules: Player 1 puts her penny down first; then player 2 puts her penny down without knowing 1's choice.

Restrictions on Information Sets

information set
\rightarrow every node has the same set of possible actions

Restrictions on Information Sets－Perfect Recall（完全記憶）

Perfect Recall

\rightarrow A player does not forget what she knew，including her own actions

Not ：Player 2 forgets 1＇s first action which she knows before．

Restrictions on Information Sets - Perfect Recall

Perfect Recall

\rightarrow A player does not forget what she knew, including her own actions

Not : Player 1 forgets her first action.

Extensive Form Game (Matching Pennies)

Example 7.C.4: Matching Pennies Players 1 and 2 move simultaneously.

Equivalent to Version C.

Perfect Information

Perfect information:
Each information set contains a single decision node.
(\Leftrightarrow imperfect information)

Perfect information:
Example 7.C. 1 (Matching Pennies Ver.B),
Example 7.C. 2 (Tick-Tack-Toe),

Imperfect information:
Example 7.B. 1 (Matching Pennies),
Example 7.C. 3 (Matching Pennies Ver.C),

Chance Moves（偶然手番）

Example 7．C．5：Matching Pennies Version D Players 1 and 2 flip a coin to decide who will play first． Then play Version B．

Common Knowledge（共有知識，共通知識）

Basic postulate：
All players know the structures of the game
know that their rivals know it
know that their rivals know that their rivals know it and so on ．．．．．．．
\rightarrow common knowledge

Game structure is common knowledge
\rightarrow complete information game（情報完備ゲーム）

Assignments

Problem Set 1 (due April 26):
Exercise (page 233) : 7.C. 1

Reading Assignment:
Text Chapter 7, pp.219-233

