

WPBE in Ex.9.C. 3

$\underline{\mu}_{1}>2 / 3$
I plays $\mathrm{F}\left(\sigma_{\mathrm{F}}=1\right)$
\rightarrow E plays I_{2} since $\gamma>0>-1$
$\rightarrow \mu=(0,1) \quad \mathrm{C}$! to $\mu_{1}>2 / 3$

WPBE in Ex.9.C. 3

$\underline{\mu}_{1}<2 / 3$
I plays $\mathrm{A}\left(\sigma_{\mathrm{F}}=0\right)$
\rightarrow E plays I_{1} since $3>2>0$
$\rightarrow \quad \mu=(1,0) \quad \mathrm{C}$! to $\mu_{1}<2 / 3$

WPBE in Ex.9.C. 3

E: $\sigma_{1}=2 / 3, \sigma_{2}=1 / 3$

$$
\text { since } \sigma_{0}=0, \quad \mu_{1}=2 / 3 \text { and } 1-\mu_{1}=1 / 3
$$

$\rightarrow \mathrm{E}: \mathrm{I}_{1}$ and I_{2} are indifferent under $\left(\sigma_{\mathrm{F}}, 1-\sigma_{\mathrm{F}}\right)$ since $\sigma_{1}, \sigma_{2}>0$

WPBE in Ex.9.C. 3

$\mathrm{E} \rightarrow 0$
I $\rightarrow 2$

$$
\sigma_{0}=0
$$

$\sigma_{0}=0$
$\rightarrow 0$
$\rightarrow 2$

E

$$
\underline{y} \geq 0
$$

$$
\mu_{1}>2 / 3 \rightarrow \mathrm{~F}
$$

$$
\mu_{1}<2 / 3 \rightarrow \mathrm{~A}
$$

$$
\mu_{1}=2 / 3 \rightarrow \mathrm{~F} \text { or } \mathrm{A}
$$

$\underline{\mu}_{1}=2 / 3$
E: I_{1} and I_{2} are indifferent under $\left(\sigma_{F}, 1-\sigma_{F}\right)$ since $\sigma_{1}, \sigma_{2}>0$.
E's payoff: $\mathrm{I}_{1} \rightarrow-\sigma_{\mathrm{F}}+3\left(1-\sigma_{\mathrm{F}}\right), \mathrm{I}_{2} \rightarrow \gamma \sigma_{\mathrm{F}}+2\left(1-\sigma_{\mathrm{F}}\right)$

$$
-\sigma_{\mathrm{F}}+3\left(1-\sigma_{\mathrm{F}}\right)=\gamma \sigma_{\mathrm{F}}+2\left(1-\sigma_{\mathrm{F}}\right) \rightarrow \sigma_{\mathrm{F}}=1 /(\gamma+2)
$$

I's strategy : $(1 /(\gamma+2),(\gamma+1) /(\gamma+2))$

WPBE in Ex.9.C. 3

WPBE
$((0,2 / 3,1 / 3),(1 /(\gamma+2),(\gamma+1) /(\gamma+2)), \mu=(2 / 3,1 / 3))$

P2 has an arbitrary belief since his information set is not reached in equilibrium. ???

Sequential Equilibrium (motivation, Ex.9.C.5)

Nash eq \rightarrow (A, A)
 ((O,A),F) is not SPNE

Sequential Equilibrium (definition)

Def. 9.C.4: (σ, μ) is a sequential equilibrium (SE) if
(i) σ is sequentially rational given μ;
(ii) \exists a sequence of completely mixed strategies $\left\{\sigma^{\mathrm{k}}\right\}_{\mathrm{k}=1}{ }^{\infty}$
with $\lim _{\mathrm{k} \rightarrow \infty} \sigma^{\mathrm{k}}=\sigma$ such that $\mu=\lim _{\mathrm{k} \rightarrow \infty} \mu^{\mathrm{k}}$
where μ^{k} is the set of beliefs derived from σ^{k} using Bayes' rule.

Sequential Equilibrium (Ex. 9.C.4)

For any comp. mixed strategy $\left(\sigma_{x}, \sigma_{y}\right), \mathrm{P} 2$'s belief $=(.5, .5)$
P 2 's choice must be " r " since $5<2 \times .5+10 \times .5=6$
P1's choice must be " y " since $2<5$
$\mathrm{SE} \rightarrow(\mathrm{y}, \mathrm{r},(.5, .5),(.5, .5))$

Sequential Equilibrium (Ex. 9.C.5)

SE must contain (A, A). (\rightarrow next slide)

Sequential Equilibrium (Ex. 9.C.5)

$$
\begin{aligned}
& \underline{\sigma}_{E}(\mathrm{O})=1, \sigma_{\mathrm{E}}(\mathrm{I})=0, \sigma_{\mathrm{E}}(\mathrm{~F})=0, \sigma_{E}(\mathrm{~A})=1, \sigma_{\mathrm{I}}(\mathrm{~F})=1, \sigma_{\mathrm{I}}(\mathrm{~A})=0 \\
& \rightarrow \sigma_{\mathrm{E}}^{\mathrm{k}}(\mathrm{O})=1-\varepsilon, \sigma_{\mathrm{E}}^{\mathrm{k}}(\mathrm{I})=\varepsilon, \sigma_{\mathrm{E}}^{\mathrm{k}}(\mathrm{~F})=\varepsilon^{\prime}, \sigma_{\mathrm{E}}^{\mathrm{k}}(\mathrm{~A})=1-\varepsilon^{\prime}, \\
& \sigma_{\mathrm{I}}^{\mathrm{k}}(\mathrm{~F})=1-\varepsilon^{\prime \prime}, \sigma_{\mathrm{I}}^{\mathrm{k}}(\mathrm{~A})=\varepsilon^{\prime \prime}
\end{aligned}
$$

$\operatorname{Prob}\left(\mathrm{H} \mid \sigma^{k}\right)=\sigma_{E}^{k}(\mathrm{I})=\varepsilon, \operatorname{Prob}\left(\mathrm{x} \mid \sigma^{k}\right)=\sigma_{E}^{k}(\mathrm{I}) \times \sigma_{\mathrm{E}}^{\mathrm{k}}(\mathrm{F})=\varepsilon \times \varepsilon{ }^{\prime}$

$$
\mu^{\mathrm{k}}(\mathrm{x})=\varepsilon^{\prime} \rightarrow \underline{\mu(\mathrm{x})=0} \quad \mu^{\mathrm{k}}(\mathrm{y})=1-\varepsilon^{\prime} \rightarrow \mu(\mathrm{y})=1
$$

Sequential Equilibrium (Ex. 9.C.5)

Sequential Equilibrium and SPNE

Prop. 9.C.2: In every SE $(\sigma, \mu), \sigma$ is an SPNE.

Assignments

Problem Set 10 (due July 18)
Exercises (pp.301-305)
9.C.2, 9.C.6(only 9.C.3 part)

Reading Assignment:
Text, Chapter 9, pp.292-300

