Weak Perfect Bayesian Nash Equilibrium (motivation)

Nash eq (SPNE)
$\rightarrow(\mathrm{O}, \mathrm{F}),\left(\mathrm{I}_{1}, \mathrm{~A}\right)$

For I: in either decision point, $\mathrm{A}>\mathrm{F}(-1<0,-1<1)$
\rightarrow I should play " A ".

$$
\rightarrow \text { introduce "belief" }
$$

Weak Perfect Bayesian Nash Eq (definition)

Def. 9.C.1: $\mu=(\mu(x))_{x \in X}$ is a system of beliefs (X : set of all nodes) if $\quad \sum_{\mathrm{x} \in \mathrm{H}} \mu(\mathrm{x})=1 \quad \forall$ information $\operatorname{set} \mathrm{H}$

Def. 9.C.2: $\sigma=\left(\sigma_{1}, \ldots, \sigma_{\mathrm{I}}\right)$ is sequentially rational at H given μ if $E\left(u_{i(H)} \mid H, \mu, \sigma_{i(H)}, \sigma_{-\mathrm{i}(\mathrm{H})}\right) \geq \mathrm{E}\left(\mathrm{u}_{\mathrm{i}(\mathrm{H})} \mid \mathrm{H}, \mu, \sigma_{\mathrm{i}(\mathrm{H})}, \sigma_{-\mathrm{i}(\mathrm{H})}\right)$ $\forall \sigma^{\wedge}{ }_{\mathrm{i}(\mathrm{H})} \in \Delta\left(\mathrm{S}_{\mathrm{i}(\mathrm{H})}\right) \quad(\mathrm{i}(\mathrm{H})$: the player who moves at H$)$
$\mathrm{E}\left(\mathrm{u}_{\mathrm{i}(\mathrm{H})} \mid \mathrm{H}, \mu, \sigma_{\mathrm{i}(\mathrm{H})}, \sigma_{-\mathrm{i}(\mathrm{H})}\right)$: expected payoff to $\mathrm{i}(\mathrm{H})$ from H if he/she is in H according to the prob. given by μ and he/she plays $\sigma_{i(H)}$, and rivals play $\sigma_{-\mathrm{i}(\mathrm{H})}$.
$\sigma=\left(\sigma_{1}, \ldots, \sigma_{\mathrm{I}}\right)$ is sequentially rational given μ
if $\forall H, \sigma=\left(\sigma_{1}, \ldots, \sigma_{\mathrm{I}}\right)$ is sequential rational at H given μ

Weak Perfect Bayesian Nash Eq (definition)

Def. 9.C.3.: (σ, μ) is a weak perfect Bayesian Eq (WPBE) if

(i) σ is sequential rational given μ
(ii) μ is derived from σ by Bayes' rule if possible, i.e.,

$$
\forall \mathrm{H} \text { such that } \operatorname{Prob}(\mathrm{H} \mid \sigma)>0
$$

$$
\mu(\mathrm{x})=\operatorname{Prob}(\mathrm{x} \mid \sigma) / \operatorname{Prob}(\mathrm{H} \mid \sigma) \forall \mathrm{x} \in \mathrm{H}
$$

WPBE and Nash Equilibrium

Prop. 9.C.1: σ is a Nash Equilibrium
$\Leftrightarrow \quad \exists \quad \mu$ such that
(i) σ is sequentially rational given μ
at H with $\operatorname{Prob}(\mathrm{H} \mid \sigma)>0$.
(ii) μ is derived from σ by Bayes' rule whenever possible.

Cor.: (σ, μ) is a WPBE $\rightarrow \sigma$ is a Nash Equilibrium

WPBE in Ex.9.C. 1

Nash eq (SPNE)

$$
\rightarrow(\mathrm{O}, \mathrm{~F}),\left(\mathrm{I}_{1}, \mathrm{~A}\right)
$$

" F " is not sequentially rational for any belief

$$
-1<0,-1<1
$$

$$
\text { WPBE } \rightarrow\left(\left(\mathrm{I}_{1}, \mathrm{~A}\right), \mu=(1,0)\right)
$$

E2 plays "A" since $1,4>0$

WPBE in Ex.9.C. 2

E1 plays " P " since $4>2,1>-1 \rightarrow P>E$

$$
4,1>0 \rightarrow \mathrm{P}>\mathrm{O}
$$

WPBE in Ex.9.C. 2

I's belief $(0,1,0) \rightarrow$ I plays "A" since $0>-2$
Then E1 plays "E" since $2>0$.

WPBE in Ex.9.C. 2

WPBE : ((P, E), (A), (A), (0, 1, 0))

Note: ((O, O), (D), (F)) Nash eq. (SPNE)

WPBE in Ex.9.C. 2

$((\mathrm{O}, \mathrm{O}),(\mathrm{D}),(\mathrm{F})) \quad$ Nash eq. (SPNE)

Assignments

Problem Set 9 (due July 11)
Exercises (pp.301-305)

$$
\text { 9.C. } 1
$$

Reading Assignment:
Text, Chapter 9, pp.287-291

