Properties of SPNE (Prop. 9.B.3)

Prop. 9.B.3: Γ_{E} : an extensive form game, $\mathrm{S}:$ a subgame σ^{S} : an SPNE of subgame S
$\Gamma^{\wedge}{ }_{E}:$ the reduced game replacing the subgame S by a terminal node with payoff determined by σ^{S}
(1) σ : an SPNE of Γ_{E} s.t. restriction of σ to S is σ^{S}.
σ^{-S}, the restriction of σ to outside $S \rightarrow \sigma^{-S}$ is an SPNE of $\Gamma^{\wedge}{ }_{E}$
(2) $\sigma^{\wedge}:$ an SPNE of $\Gamma^{\wedge}{ }_{E} \rightarrow\left(\sigma^{\wedge}, \sigma^{S}\right)$ is an SPNE of Γ_{E}

Proof of Prop. 9.B. 3

(1) σ : an SPNE of $\Gamma_{E} \quad \sigma^{S}:$ restriction of σ to S
$\sigma^{-S}:$ restriction of σ to outside S $\rightarrow \sigma^{-S}$ is an SPNE of $\Gamma^{\wedge}{ }_{E}$

Pf: Suppose σ^{-S} is not an SPNE of $\Gamma^{\wedge}{ }_{\mathrm{E}}$.
Then \exists a subgame T of $\Gamma^{\wedge}{ }_{E}$ s.t. σ^{T} is not a Nash eq. in $\Gamma^{\wedge}{ }_{E}$.
$\exists \mathrm{i}$ who can increase his payoff by deviating from σ^{T} in $\Gamma^{\wedge}{ }_{\mathrm{E}}$.
i can increase his payoff in Γ_{E} by the same deviation.

Proof of Prop. 9.B. 3

(2) σ^{\wedge} : an SPNE of $\Gamma^{\wedge}{ }_{E} \rightarrow\left(\sigma^{\wedge}, \sigma^{S}\right)$ is and SPNE of Γ_{E}

Pf: Let $\sigma^{\prime}=\left(\sigma^{\wedge}, \sigma^{S}\right)$. Take any subgame T.
If $T \subseteq S$ or $T \subseteq-S$, then $\sigma^{, T}$ is a Nash eq. of T.
If not, T contains S.
Suppose $\exists \mathrm{i}$ who can gain more by deviating from σ_{i}^{\prime}.
Since σ^{S} is an SPNE of S, i changes his choice outside S.
Then i can gain more also in $\Gamma_{\mathrm{E}} \cdot \mathrm{C}$! Q.E.D.

Generalized Backward Induction

1 Start at the end of the game tree. Identify Nash eq. in each of the final subgames.

2 Select one Nash eq. in each of the final subgames, and derive the reduced extensive form game by replacing each subgame by a terminal node with payoffs of the selected Nash eq.

3 Repeat this procedure until every move in the original extensive form game is determined.

Example 9.B. 4

Nash eq. (La, Sm), (Sm, La)

SPNE

$$
\begin{aligned}
& 0 \\
& 2
\end{aligned}<-1 \quad((\mathrm{In}, \mathrm{La}), \mathrm{Sm})
$$

Ou $\underbrace{\text { On }}_{\text {In }}$ SPNE

$$
0>-1 \quad((\mathrm{Ou}, \mathrm{Sm}), \mathrm{La})
$$

$$
2 \quad 1
$$

Example 9.B. 4 (Ex. 9.B.6)

 Mixed strategy Nash eq. in the subgame

Nash eq. (La, Sm), (Sm, La)

Mixed strategy Nash eq.?

Prop. 9.B. 4

Prop. 9.B.4: $\Gamma_{\mathrm{E}}^{\mathrm{t}}:$ simultaneous move game, $\mathrm{t}=1,2, \ldots, \mathrm{~T}$.
Γ_{E} : successive play of $\Gamma_{\mathrm{E}}^{\mathrm{t}}$
Each player's payoff $=$ sum of his payoffs in T periods
Each player knows others' choices just after each game is played.
If \exists a unique Nash equilibrium σ^{t} in Γ_{E}^{t}, then there is a unique SPNE in Γ_{E}
in which each player i plays σ_{i}^{t} in $t=1,2, \ldots, T$.

Pf: Induction on T. If $T=1$, clear.
Suppose the claim is true for all $\mathrm{T} \leq \mathrm{n}-1$.
Show the claim holds when $\mathrm{T}=\mathrm{n}$.
After the first period is over, we have $\mathrm{n}-1$ period game.
Thus from the induction hypothesis, the conclusion easily follows.

Repeated Game

$$
\mathrm{N}=\{1,2\}, \mathrm{S}_{1}=\{\mathrm{a}, \mathrm{~b}\}, \mathrm{S}_{2}=\{\mathrm{c}, \mathrm{~d}\}
$$

Two-stage game

Centipede Game

SPNE (S, S, \ldots, S), (S, S, $\ldots, S)$)

Assignments

Problem Set 8 (due July 4)
Exercises (pp.301-305)

$$
\text { 9.B.9, 9.B. } 10
$$

Reading Assignment:
Text, Chapter 9, pp.282-287

