Example 9.B.1

E

	•				
	Fi		Ac		
Ou	<u>0</u> ,	<u>2</u>	0,	<u>2</u>	
In	-3,	-1	<u>2</u> ,	1	

Nash eq (in pure str.)

→ (Ou, Fi), (In, Ac)

 $(Ou, Fi) \rightarrow rational ???$

Fi: I's incredible threat

If E really plays "In", I will play "Ac". (1 > -1)

Backward Induction

Backward induction

- ① $1 > -1 \rightarrow I$ plays Ac
- ② 2 > 0 \rightarrow E plays In

Games with perfect information

→ every information set has <u>one</u> decision point.

Backward Induction (Example 9.B.2)

Backward induction \rightarrow (R, a, (r, r, ℓ)) \rightarrow Nash eq. Other Nash eq. \rightarrow (L, b, (r, ℓ , r))

Other Nash Equilibria (Example 9.B.2)

Nash Equilibria in Games with Perfect Information

<u>Prop. 9.B.1</u> (Zermelo's Theorem): Every <u>finite</u> game w/ <u>perfect</u> <u>information</u> has a pure strategy Nash equilibrium produced by backward induction. If no player has the same payoffs, then \exists unique Nash eq. derived in this manner.

Pf: a finite game w/ perfect information

- → backward induction is well-defined no player has the same payoffs
 - → a unique strategy combination

Let $(\sigma_1, ..., \sigma_I)$ be the strategy combination derived thru backward induction

Show $(\sigma_1, \ldots, \sigma_I)$ is a Nash eq.

Proof

Show
$$\forall i \ \forall \sigma_i^{\wedge} \ u_i(\sigma_i, \ \sigma_{-i}) \geq u_i(\sigma_i^{\wedge}, \ \sigma_{-i})$$

Take any σ_i° and define i's strategy $\sigma_i^{\circ}(n)$ as follows. For each node x,

let $d(x) = \max \# \text{ of nodes between } x \text{ and terminal nodes}$

a terminal node

Let
$$\sigma_i^{\wedge}(n)(x) = \sigma_i(x)$$
 if $d(x) \le n$
 $\sigma_i^{\wedge}(x)$ if $d(x) > n$

Proof

Show $u_i(\sigma_i^{\wedge}(N) = \sigma_i, \sigma_{-i}) \ge u_i(\sigma_i^{\wedge}, \sigma_{-i})$: induction on n

(1)
$$n = 0$$
: $\sigma_i^{\wedge}(0)(x) = \sigma_i(x)$ if $d(x) = 0$
 $\sigma_i^{\wedge}(x)$ if $d(x) > 0$

 $\sigma_i(x)$ chooses an alternative at x that max i's payoff

$$\rightarrow u_i(\sigma_i^{\wedge}(0), \sigma_{-i}) \geq u_i(\sigma_i^{\wedge}, \sigma_{-i})$$

- (2) Suppose for n = k-1 $u_{i} (\sigma^{\wedge}_{i}(k-1), \sigma_{-i}) \geq u_{i} (\sigma^{\wedge}_{i}, \sigma_{-i}) \text{ holds.}$
- (3) For n = k, show $u_i(\sigma_i^{\wedge}(k), \sigma_{-i}) \ge u_i(\sigma_i^{\wedge}, \sigma_{-i})$

Proof

(2) Suppose for n = k-1, $u_i(\sigma_i^{(k-1)}, \sigma_{-i}) \ge u_i(\sigma_i^{(k)}, \sigma_{-i})$

(3) For
$$n = k$$
, \underline{show} $u_i(\sigma_i^{\wedge}(k), \sigma_{-i}) \ge u_i(\sigma_i^{\wedge}, \sigma_{-i})$

$$\sigma^{\wedge}_{i}(k)(x) = \sigma_{i}(x) \qquad \sigma^{\wedge}(k)(x') = \sigma_{i}(x') \qquad \sigma_{i}(x'') \cdots$$

$$\sigma^{\wedge}_{i}(k-1)(x) = \sigma^{\wedge}_{i}(x) \qquad \sigma^{\wedge}_{i}(k-1)(x') = \sigma_{i}(x') \qquad \sigma_{i}(x'')$$

By the definition of σ_i , u_i ($\sigma_i^{\circ}(k)$, σ_{-i}) $\geq u_i$ ($\sigma_i^{\circ}(k-1)$, σ_{-i}) 3 and 3 \rightarrow 2 holds.

Eventually $u_i(\sigma_i, \sigma_{-i}) = u_i(\sigma_i^{\wedge}(N), \sigma_{-i}) \ge u_i(\sigma_i^{\wedge}, \sigma_{-i})$ Q.E.D.

A Game with Imperfect Information (Example 9.B.3)

1						
		Ac		Fi		
E	Ac	<u>3</u> ,	<u>1</u>	<u>-2</u> , -	- 1	
	Fi	1,	- 2	- 3, <u>-</u>	<u>-1</u>	

Nash eq. (Ac, Ac)

Subgames

<u>Defn. 9.B.1</u>: A subgame of an extensive form game is a subset of the game having the following properties:

- (1) It begins with an information set containing only one node.
- (2) It contains all successors of the node and no other node.
- (3) For each successor, any node, in the information set that contains the successor, is in the subset.

Note: (1) whole game \rightarrow a subgame

- (2) Fig.9.B.1 \rightarrow two subgames
- (3) Fig.9.B.3 \rightarrow five subgames (games with perfect information
 - → each node initiates a subgame)
- (4) Fig.9.B.4 \rightarrow two subgames
- (5) Fig.9.B.5 \rightarrow parts of the game that are not subgames

Subgame Perfect Equilibrium (definition)

<u>Defn. 9.B.2</u>: A strategy profile $\sigma = (\sigma_1, ..., \sigma_I)$ of an extensive form game is <u>SPNE</u> if it induces a Nash equilibrium in every subgame of the game.

- Note: (1) SPNE \rightarrow Nash equilibrium (whole game is a subgame.)
 - (2) SPNE \rightarrow SPNE of each subgame
 - (3) Fig.9.B.1 \rightarrow (In, Ac)
 - (4) Fig.9.B.2 \to (R, a, (r, r, ℓ))
 - (5) Fig.9.B.3 \rightarrow ((In, Ac), Ac)

SPNE in Games with Perfect Information

<u>Prop. 9.B.2</u>: Every <u>finite</u> game w/ <u>perfect information</u> has a pure strategy SPNE. If no player has the same payoffs, then ∃ unique SPNE

Pf: clear from Prop. 9.B.1 and the definition of SPNE

Assignments

Problem Set 7 (due June 27)

Exercises (pp.301-305)

9.B.3, 9.B.5

Reading Assignment:

Text, Chapter 9, pp.277-282