Example 9.B. 1

Nash eq (in pure str.)
$\rightarrow(\mathrm{Ou}, \mathrm{Fi}),(\mathrm{In}, \mathrm{Ac})$
($\mathrm{Ou}, \mathrm{Fi}) \rightarrow$ rational ? ? ?
Fi : I's incredible threat
If E really plays "In", I will play "Ac". ($1>-1$)

Backward Induction

Backward induction

$$
\begin{gathered}
\text { (1) } 1>-1 \rightarrow \text { I plays Ac } \\
\text { (2) } 2>0 \rightarrow \text { E plays In } \\
\\
(\mathrm{In}, \mathrm{Ac})
\end{gathered}
$$

Games with perfect information
\rightarrow every information set has one decision point.

Backward Induction (Example 9.B.2)

Backward induction $\rightarrow(\mathrm{R}, \mathrm{a},(\mathrm{r}, \mathrm{r}, \ell)) \rightarrow$ Nash eq.
Other Nash eq. $\rightarrow(\mathrm{L}, \mathrm{b},(\mathrm{r}, \ell, \mathrm{r}))$

Other Nash Equilibria (Example 9.B.2)

Backward induction

$$
\rightarrow(\mathrm{R}, \mathrm{a},(\mathrm{r}, \mathrm{r}, \ell))
$$

\rightarrow Nash eq.

Other Nash eq.

$$
\rightarrow \quad(\mathrm{L}, \mathrm{~b},(\mathrm{r}, \ell, \mathrm{r}))
$$

Nash Equilibria in Games with Perfect Information

Prop. 9.B. 1 (Zermelo's Theorem) : Every finite game w/ perfect information has a pure strategy Nash equilibrium produced by backward induction. If no player has the same payoffs, then \exists unique Nash eq. derived in this manner.

Pf: a finite game $\mathrm{w} /$ perfect information
\rightarrow backward induction is well-defined
no player has the same payoffs
\rightarrow a unique strategy combination
Let $\left(\sigma_{1}, \ldots, \sigma_{\mathrm{I}}\right)$ be the strategy combination derived thru backward induction

Show $\left(\sigma_{1}, \ldots, \sigma_{\mathrm{I}}\right)$ is a Nash eq.

Proof

Show $\forall \mathrm{i} \forall \sigma_{i}^{\wedge} \quad \mathrm{u}_{\mathrm{i}}\left(\sigma_{\mathrm{i}}, \sigma_{-\mathrm{i}}\right) \geq \mathrm{u}_{\mathrm{i}}\left(\sigma_{\mathrm{i}}, \sigma_{-\mathrm{i}}\right)$
Take any $\sigma^{\wedge}{ }_{i}$ and define i 's strategy $\sigma_{\mathrm{i}}{ }_{\mathrm{i}}(\mathrm{n})$ as follows.
For each node x ,
let $\mathrm{d}(\mathrm{x})=\underline{\max } \#$ of nodes between x and terminal nodes

$$
\text { Let } \begin{aligned}
\sigma_{i}^{\wedge}(n)(x)= & \sigma_{i}(x) \quad \text { if } d(x) \leq n \\
& \sigma_{i}^{\wedge}(x) \quad \text { if } d(x)>n
\end{aligned}
$$

Note:

$$
\left\{\begin{aligned}
\sigma_{i}^{\wedge}(0)(x)=\sigma_{i}(x) & \text { if } d(x)=0 \\
\sigma_{i}(x) & \text { if } d(x)>0 \\
\sigma_{i}(N)(x)=\sigma_{i}(x) & \forall x \quad \leftarrow \quad N=\max _{x} d(x)
\end{aligned}\right.
$$

Proof

Show $u_{i}\left(\sigma_{i}^{\wedge}(N)=\sigma_{i}, \quad \sigma_{-i}\right) \geq u_{i}\left(\sigma_{i}, \sigma_{-i}\right)$: induction on n
(1) $\mathrm{n}=0: \quad \sigma_{\mathrm{i}}^{\wedge}(0)(\mathrm{x})=\sigma_{\mathrm{i}}(\mathrm{x})$ if $\mathrm{d}(\mathrm{x})=0$

$$
\sigma_{i}^{\wedge}(x) \text { if } d(x)>0
$$

$\sigma_{i}(x)$ chooses an alternative at x that max i's payoff

$$
\rightarrow u_{i}\left(\sigma_{i}^{\wedge}(0), \sigma_{-i}\right) \geq u_{i}\left(\sigma_{i}, \sigma_{-i}\right)
$$

(2) Suppose for $\mathrm{n}=\mathrm{k}-1$

$$
u_{i}\left(\sigma_{i}^{\wedge}(k-1), \sigma_{-i}\right) \geq u_{i}\left(\sigma_{i}^{\wedge}, \sigma_{-i}\right) \text { holds. }
$$

(3) For $n=k$, show $u_{i}\left(\sigma_{i}(k), \sigma_{-i}\right) \geq u_{i}\left(\sigma_{i}, \sigma_{-i}\right)$

Proof

(2) Suppose for $n=k-1, u_{i}\left(\sigma_{i}(k-1), \sigma_{-i}\right) \geq u_{i}\left(\sigma_{i}^{\wedge}, \sigma_{-i}\right)$
(3) For $n=k$, show $u_{i}\left(\sigma_{i}^{\wedge}(k), \sigma_{-i}\right) \geq u_{i}\left(\sigma_{i}, \sigma_{-i}\right)$

$$
\begin{array}{lll}
\sigma_{i}(k)(x)=\sigma_{i}(x) & \sigma^{\wedge}(k)\left(x^{\prime}\right)=\sigma_{i}\left(x^{\prime}\right) & \sigma_{i}\left(x^{\prime \prime}\right) \cdots \\
\sigma_{i}(k-1)(x)=\sigma_{i}(x) & \sigma_{i} \wedge_{i}(k-1)\left(x^{\prime}\right)=\sigma_{i}\left(x^{\prime}\right) & \sigma_{i}\left(x^{\prime \prime}\right)
\end{array}
$$

By the definition of $\sigma_{i}, u_{i}\left(\sigma_{i}(k), \sigma_{-i}\right) \geq u_{i}\left(\sigma_{i}(k-1), \sigma_{-i}\right)$
(1) and (3) \rightarrow (2) holds.

Eventually $u_{i}\left(\sigma_{i}, \sigma_{-i}\right)=u_{i}\left(\sigma_{i}(N), \sigma_{-i}\right) \geq u_{i}\left(\sigma_{i}, \sigma_{-i}\right)$ Q.E.D.

A Game with Imperfect Information (Example 9.B.3)

Subgames

Defn. 9.B.1: A subgame of an extensive form game is a subset of the game having the following properties:
(1) It begins with an information set containing only one node.
(2) It contains all successors of the node and no other node.
(3) For each successor, any node, in the information set that contains the successor, is in the subset.

Note: (1) whole game \rightarrow a subgame
(2) Fig.9.B. $1 \rightarrow$ two subgames
(3) Fig.9.B. $3 \rightarrow$ five subgames
(games with perfect information
\rightarrow each node initiates a subgame)
(4) Fig.9.B. $4 \rightarrow$ two subgames
(5) Fig.9.B. $5 \rightarrow$ parts of the game that are not subgames

Subgame Perfect Equilibrium (definition)

Defn. 9.B.2: A strategy profile $\sigma=\left(\sigma_{1}, \ldots, \sigma_{\mathrm{I}}\right)$ of an extensive form game is SPNE if it induces a Nash equilibrium in every subgame of the game.

Note: (1) SPNE \rightarrow Nash equilibrium (whole game is a subgame.)
(2) SPNE \rightarrow SPNE of each subgame
(3) Fig.9.B. $1 \rightarrow$ (In, Ac)
(4) Fig.9.B. $2 \rightarrow$ (R, a, (r, r, ℓ))
(5) Fig.9.B. $3 \rightarrow$ ((In, Ac), Ac)

SPNE in Games with Perfect Information

Prop. 9.B.2 : Every finite game w/ perfect information has a pure strategy SPNE. If no player has the same payoffs, then \exists unique SPNE

Pf: clear from Prop. 9.B. 1 and the definition of SPNE

Assignments

Problem Set 7 (due June 27)
Exercises (pp.301-305)
9.B.3, 9.B. 5

Reading Assignment:
Text, Chapter 9, pp.277-282

