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Projection PursuitProjection Pursuit
Find the most non-Gaussian direction.
Original formulation: maximize distance 
of kurtosis from 3

Gradient ascent algorithm
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210Drawbacks of Gradient MethodDrawbacks of Gradient Method

Choice of    affects speed of convergence.
If     is small: Slow convergence
If     is large: Fast but less accurate 

Appropriately choosing    is not easy in 
practice.
Demonstrations:

demo(1): appropriate   
demo(2): small
demo(3): large
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211Alternative FormulationAlternative Formulation

Maximize or minimize kurtosis

is given by          or           .
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212LagrangianLagrangian

In either minimization or maximization case, 
Lagrangian is given by

Stationary (necessary) condition:
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213Newton Method (1-Dim.)Newton Method (1-Dim.)
Problem: Find    such that  b f(b) = 0

f(b) f(b0)
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Tangent line

Tangent line



214Newton Method (Multi-Dim.)Newton Method (Multi-Dim.)

Problem: Find      such that  

Note:
is a    -dimensional vector.

is a    -dimensional matrix.
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215Newton-Based PP MethodNewton-Based PP Method
In the current setting,

Drawbacks:
Calculating inverse            in each step is 
computationally demanding.
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216ApproximationApproximation

Then

Calculating inverse is easy!

kbk = 1

≈ (12 + 2λ) Id
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217Approximation (cont.)Approximation (cont.)

Approximate updating rule is given by

is later normalized, so the scaling factor 
can be dropped:

The update rule does not depend on    !
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218Approximate Newton-Based
PP Method

Approximate Newton-Based
PP Method

Problem to be solved:

Repeat until convergence:
Update     by approximate Newton method to 
satisfy the stationary point condition                 :

Modify    to satisfy               :b kbk = 1

b
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219ExamplesExamples

Demonstrations:
demo(1): Gradient ascent with appropriate   
demo(4): Approximate Newton

Approximate Newton
is much faster than gradient ascent.
does not include any tuning parameter!

ε



220OutliersOutliers

Outliers: Irregular large values
If a Gaussian component contains outliers, 
its non-Gaussianity becomes very large 
since kurtosis contains 4th power.
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221ExamplesExamples

A single outlier can totally corrupt the result.
Influence of outliers needs to be reduced!

Without outlier With single outlier



222General Non-Gaussian MeasuresGeneral Non-Gaussian Measures

For some function        , we define a 
general non-Gaussian measure by

corresponds to Kurtosis.
To suppress the effect of outliers, using a 
“gentler” function would be appropriate.

G(s) = s4

G(s)

1

n

nX
i=1

G(hb, exii)



223General Non-Gaussian MeasuresGeneral Non-Gaussian Measures

Examples of smooth functions:
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224Approximate Newton ProcedureApproximate Newton Procedure
Approximate Newton procedure for centered 
and sphered data:

Update     to satisfy the stationary-point condition:

Modify    to satisfy               :
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225DerivativesDerivatives

Derivatives:

(s4)0 = 4s3

(log cosh(s))0 = tanh(s)

(− exp(−s2/2))0 = s exp(−s2/2)

(4s3)0 = 12s2

(tanh(s))0 = 1− tanh2(s)

(s exp(−s2/2))0 = (1− s2) exp(−s2/2)



226ExamplesExamples
Approximate Newton with Kurtosis:

Approximate Newton with log(cosh):

Approximate Newton with log(cosh) is 
robust against outliers!

g(s) = 4s3

g(s) = tanh(s)



227Extracting Several
Non-Gaussian Directions

Extracting Several
Non-Gaussian Directions

Running the algorithm many times from 
different initial points may give different non-
Gaussian directions.
However, this is not computationally efficient.
Another idea: Find orthogonal directions
This is achieved by modifying the direction as 
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228Full AlgorithmFull Algorithm
Center and sphere samples:
For

Repeat until convergence:

Embed the data      by

b←− b/kbk
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229HomeworkHomework
1. Implement approximate Newton-based PP 

method with general non-Gaussianity 
measure and reproduce the 2-dimensional 
examples with an outlier shown in the class.
You may create similar (or more 
interesting) data sets by yourself.

http://sugiyama-www.cs.titech.ac.jp/~sugi/data/DataAnalysis

Data Set 3 Data Set 5



230Homework (cont.)Homework (cont.)

2. Prove that the approximate Newton 
updating rule is given by

under the following approximation:
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ScheduleSchedule

June 25th: Projection Pursuit (2)
Application Deadline to Mini-Conference

July 2nd: Independent Component Analysis
July 9th: Preparation for Mini-Conference
July 16th: Mini-Conference Day 1
July 23rd: Mini-Conference Day 2
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