Advanced Data Analysis: Projection Pursuit (2)

Masashi Sugiyama (Computer Science)

W8E-406, <u>sugi@cs.titech.ac.jp</u> http://sugiyama-www.cs.titech.ac.jp/~sugi

Projection Pursuit 209

Find the most non-Gaussian direction.

Original formulation: maximize distance of kurtosis from 3

$$oldsymbol{\psi} = rgmax_{oldsymbol{b} \in \mathbb{R}^d} \left(rac{1}{n} \sum_{i=1}^n \langle oldsymbol{b}, \widetilde{oldsymbol{x}}_i
angle^4 - 3
ight)^2$$

subject to
$$\|\boldsymbol{b}\| = 1$$

Gradient ascent algorithm

$$\boldsymbol{b} \longleftarrow \boldsymbol{b} + \varepsilon \left(\frac{1}{n} \sum_{i=1}^{n} \langle \boldsymbol{b}, \widetilde{\boldsymbol{x}}_i \rangle^4 - 3 \right) \frac{1}{n} \sum_{i=1}^{n} \widetilde{\boldsymbol{x}}_i \langle \boldsymbol{b}, \widetilde{\boldsymbol{x}}_i \rangle^3$$

• $\boldsymbol{b} \longleftarrow \boldsymbol{b} / \| \boldsymbol{b} \|$

Drawbacks of Gradient Method¹⁰

Choice of ε affects speed of convergence.

- If ε is small: Slow convergence
- If ε is large: Fast but less accurate
- Appropriately choosing ε is not easy in practice.
- Demonstrations:
 - demo(1): appropriate ε
 - demo(2): small ε
 - demo(3): large ε

Alternative Formulation ²¹¹

Maximize or minimize kurtosis

•
$$\psi_{max} = \operatorname*{argmax}_{\boldsymbol{b} \in \mathbb{R}^d} \left[\frac{1}{n} \sum_{i=1}^n \langle \boldsymbol{b}, \widetilde{\boldsymbol{x}}_i \rangle^4 \right]$$
 subject to $\|\boldsymbol{b}\|^2 = 1$
• $\psi_{min} = \operatorname*{argmin}_{\boldsymbol{b} \in \mathbb{R}^d} \left[\frac{1}{n} \sum_{i=1}^n \langle \boldsymbol{b}, \widetilde{\boldsymbol{x}}_i \rangle^4 \right]$ subject to $\|\boldsymbol{b}\|^2 = 1$

• ψ is given by ψ_{max} or ψ_{min} .

Lagrangian

In either minimization or maximization case, Lagrangian is given by

$$L(\boldsymbol{b}, \lambda) = \frac{1}{n} \sum_{i=1}^{n} \langle \boldsymbol{b}, \widetilde{\boldsymbol{x}}_i \rangle^4 + \lambda(\|\boldsymbol{b}\|^2 - 1)$$

Stationary (necessary) condition:

$$\frac{\partial L}{\partial \boldsymbol{b}} = \frac{4}{n} \sum_{i=1}^{n} \widetilde{\boldsymbol{x}}_i \langle \boldsymbol{b}, \widetilde{\boldsymbol{x}}_i \rangle^3 + 2\lambda \boldsymbol{b} = \boldsymbol{0}$$

We want to find b such that

$$\frac{\partial L}{\partial \boldsymbol{b}} = \boldsymbol{0}$$

Newton Method (Multi-Dim.) ²¹⁴

Problem: Find **b** such that $f(\mathbf{b}) = \mathbf{0}$

$$oldsymbol{b}_{k+1} \longleftarrow oldsymbol{b}_k - \left(rac{\partial f}{\partial oldsymbol{b}} igg|_{oldsymbol{b} = oldsymbol{b}_k}
ight)^{-1} f(oldsymbol{b}_k)$$

Note:

- f(b) is a d-dimensional vector.
- $\frac{\partial f}{\partial b}$ is a *d*-dimensional matrix.

Newton-Based PP Method ²¹⁵

In the current setting,

$$f(\boldsymbol{b}) = rac{4}{n} \sum_{i=1}^{n} \widetilde{\boldsymbol{x}}_i \langle \boldsymbol{b}, \widetilde{\boldsymbol{x}}_i
angle^3 + 2\lambda \boldsymbol{b}$$

$$\frac{\partial f}{\partial \boldsymbol{b}} = \frac{12}{n} \sum_{i=1}^{n} \widetilde{\boldsymbol{x}}_{i} \widetilde{\boldsymbol{x}}_{i}^{\top} \langle \boldsymbol{b}, \widetilde{\boldsymbol{x}}_{i} \rangle^{2} + 2\lambda \boldsymbol{I}_{d}$$

Drawbacks:

- Calculating inverse $\left(\frac{\partial f}{\partial b}\right)^{-1}$ in each step is computationally demanding.
- λ is unknown.

Approximation 216

$$\frac{1}{n}\sum_{i=1}^{n}\widetilde{x}_{i}\widetilde{x}_{i}^{\top}\langle \boldsymbol{b},\widetilde{x}_{i}\rangle^{2} \approx \left(\frac{1}{n}\sum_{i=1}^{n}\widetilde{x}_{i}\widetilde{x}_{i}^{\top}\right)\left(\frac{1}{n}\sum_{i=1}^{n}\langle \boldsymbol{b},\widetilde{x}_{i}\rangle^{2}\right) = \boldsymbol{I}_{d}$$
$$\frac{1}{n}\sum_{i=1}^{n}\widetilde{x}_{i}\widetilde{x}_{i}^{\top} = \boldsymbol{I}_{d} \quad \|\boldsymbol{b}\| = 1$$
$$\text{Then}$$
$$\frac{\partial f}{\partial \boldsymbol{b}} = \frac{12}{n}\sum_{i=1}^{n}\widetilde{x}_{i}\widetilde{x}_{i}^{\top}\langle \boldsymbol{b},\widetilde{x}_{i}\rangle^{2} + 2\lambda\boldsymbol{I}_{d}$$
$$\approx (12+2\lambda)\boldsymbol{I}_{d}$$

Calculating inverse is easy!

Approximation (cont.) 217

$$f(\boldsymbol{b}) = rac{4}{n} \sum_{i=1}^{n} \widetilde{\boldsymbol{x}}_i \langle \boldsymbol{b}, \widetilde{\boldsymbol{x}}_i \rangle^3 + 2\lambda \boldsymbol{b}$$

$$\frac{\partial f}{\partial \boldsymbol{b}} \approx \left(12 + 2\lambda\right) \boldsymbol{I}_d$$

Approximate updating rule is given by

$$oldsymbol{b} \longleftarrow rac{2}{6+\lambda} \left(3oldsymbol{b} - rac{1}{n} \sum_{i=1}^n \widetilde{oldsymbol{x}}_i \langle oldsymbol{b}, \widetilde{oldsymbol{x}}_i
angle^3
ight)$$

b is later normalized, so the scaling factor can be dropped: $b = 2b = 1 \sum_{n=1}^{n} \sum_{n=1}^{\infty} \frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{2$

$$oldsymbol{b} \longleftarrow 3oldsymbol{b} - rac{1}{n}\sum_{i=1}^n \widetilde{oldsymbol{x}}_i \langle oldsymbol{b}, \widetilde{oldsymbol{x}}_i
angle^3$$

The update rule does not depend on λ !

Approximate Newton-Based ²¹⁸ PP Method

Problem to be solved:

$$f(\boldsymbol{b}) = \boldsymbol{0}$$
 subject to $\|\boldsymbol{b}\|^2 = 1$

Repeat until convergence:

• Update **b** by approximate Newton method to satisfy the stationary point condition $\partial L/\partial b = 0$:

$$oldsymbol{b} \longleftarrow 3oldsymbol{b} - rac{1}{n}\sum_{i=1}^n \widetilde{oldsymbol{x}}_i \langle oldsymbol{b}, \widetilde{oldsymbol{x}}_i
angle^3$$

• Modify \boldsymbol{b} to satisfy $\|\boldsymbol{b}\| = 1$:

 $oldsymbol{b} \longleftarrow oldsymbol{b} / \|oldsymbol{b}\|$

Demonstrations:

- demo(1): Gradient ascent with appropriate ε
- demo(4): Approximate Newton

Approximate Newton

- is much faster than gradient ascent.
- does not include any tuning parameter!

Outliers

Outliers: Irregular large values
 If a Gaussian component contains outliers, its non-Gaussianity becomes very large since kurtosis contains 4th power.

A single outlier can totally corrupt the result.
 Influence of outliers needs to be reduced!

General Non-Gaussian Measures

For some function G(s), we define a general non-Gaussian measure by

$$\frac{1}{n}\sum_{i=1}^{n}G(\langle \boldsymbol{b}, \widetilde{\boldsymbol{x}}_i \rangle)$$

• $G(s) = s^4$ corresponds to Kurtosis.

To suppress the effect of outliers, using a "gentler" function would be appropriate.

General Non-Gaussian Measures

Examples of smooth functions:

•
$$G(s) = \log \cosh(s)$$

• $G(s) = -\exp(-s^2/2)$

Approximate Newton Procedur²⁴

Approximate Newton procedure for centered and sphered data:

• Update **b** to satisfy the stationary-point condition:

$$\begin{split} g(s) &= G'(s) \\ b \longleftarrow \frac{1}{n} b \sum_{i=1}^{n} g'(\langle b, \widetilde{x}_i \rangle) - \frac{1}{n} \sum_{i=1}^{n} \widetilde{x}_i g(\langle b, \widetilde{x}_i \rangle) \\ & \text{(Homework)} \\ \bullet \text{ Modify } b \text{ to satisfy } \|b\| = 1 \text{ :} \end{split}$$

 $oldsymbol{b} \longleftarrow oldsymbol{b} / \|oldsymbol{b}\|$

Derivatives

Derivatives:

•
$$(s^4)' = 4s^3$$

 $(4s^3)' = 12s^2$

- $(\log \cosh(s))' = \tanh(s)$ $(\tanh(s))' = 1 - \tanh^2(s)$
- $(-\exp(-s^2/2))' = s \exp(-s^2/2)$ $(s \exp(-s^2/2))' = (1 - s^2) \exp(-s^2/2)$

Approximate Newton with Kurtosis:

$$g(s) = 4s^3$$

226

×

Approximate Newton with log(cosh):

$$g(s) = \tanh(s)$$

Approximate Newton with log(cosh) is robust against outliers!

Extracting Several Non-Gaussian Directions

227

Running the algorithm many times from different initial points may give different non-Gaussian directions.

However, this is not computationally efficient.

Another idea: Find orthogonal directions

This is achieved by modifying the direction as

$$oldsymbol{b} \longleftarrow oldsymbol{b} - \sum_{i=1}^{k-1} \langle oldsymbol{b}, oldsymbol{\psi}_i
angle oldsymbol{\psi}_i \ \mathbf{b} = \sum_{i=1}^{k-1} \langle oldsymbol{b}, oldsymbol{\psi}_i
angle oldsymbol{\psi}_i \ \mathbf{b} = \sum_{i=1}^{k-1} \langle oldsymbol{b}, oldsymbol{\psi}_i
angle oldsymbol{\psi}_i \ \mathbf{b} = \sum_{i=1}^{k-1} \langle oldsymbol{b}, oldsymbol{\psi}_i
angle oldsymbol{\psi}_i \ \mathbf{b} = \sum_{i=1}^{k-1} \langle oldsymbol{b}, oldsymbol{\psi}_i
angle oldsymbol{\psi}_i \ \mathbf{b} = \sum_{i=1}^{k-1} \langle oldsymbol{b}, oldsymbol{\psi}_i
angle oldsymbol{\psi}_i \ \mathbf{b} = \sum_{i=1}^{k-1} \langle oldsymbol{b}, oldsymbol{\psi}_i
angle oldsymbol{\psi}_i \ \mathbf{b} = \sum_{i=1}^{k-1} \langle oldsymbol{b}, oldsymbol{\psi}_i
angle oldsymbol{\psi}_i \ \mathbf{b} = \sum_{i=1}^{k-1} \langle oldsymbol{b}, oldsymbol{b}, oldsymbol{b} = \sum_{i=1}^{k-1} \langle oldsymbol{b}, oldsymbol{\psi}_i
angle oldsymbol{b} oldsymbol{b} oldsymbol{b} = \sum_{i=1}^{k-1} \langle oldsymbol{b}, oldsymbol{b}, oldsymbol{b} = \sum_{i=1}^{k-1} \langle oldsymbol{b}, oldsymbol{b} = \sum_$$

Full Algorithm

Center and sphere samples: $\widetilde{X} = (XH^2X)^{-\frac{1}{2}}XH$

For
$$k = 1, 2, ..., m$$

• Repeat until convergence:

$$\mathbf{b} \longleftarrow \frac{1}{n} \mathbf{b} \sum_{i=1}^{n} g'(\langle \mathbf{b}, \widetilde{\mathbf{x}}_i \rangle) - \frac{1}{n} \sum_{i=1}^{n} \widetilde{\mathbf{x}}_i g(\langle \mathbf{b}, \widetilde{\mathbf{x}}_i \rangle)$$

$$\mathbf{b} \longleftrightarrow \mathbf{b} - \sum_{i=1}^{k-1} \langle \mathbf{b}, \psi_i \rangle \psi_i$$

$$\mathbf{b} \longleftrightarrow \mathbf{b} / \| \mathbf{b} \|$$

$$\mathbf{X} = (\mathbf{x}_1 | \mathbf{x}_2 | \cdots | \mathbf{x}_n)$$

$$\mathbf{X} = (\mathbf{x}_1 | \mathbf{x}_2 | \cdots | \mathbf{x}_n)$$

$$\mathbf{H} - \mathbf{I} - \frac{1}{1}$$

 \mathcal{N}

•
$$\psi_k = b$$

Embed the data x by
 $\overline{z} = B_{PP}(x - \frac{1}{2}X\mathbf{1}_n)$

$$oldsymbol{H} = oldsymbol{I}_n - rac{1}{n} oldsymbol{1}_{n imes n}$$

 $oldsymbol{I}_n$: *n*-dimensional identity matrix
 $oldsymbol{1}_{n imes n}$: *n imes n* matrix with all ones
 $oldsymbol{1}_n$: *n*-dimensional vector with all ones
 $oldsymbol{B}_{PP} = (oldsymbol{\psi}_1 | oldsymbol{\psi}_2 | \cdots | oldsymbol{\psi}_m)^{ op}$

 $\langle \Psi_1 | \Psi_2 |$

 $\mathbf{D}PP$

228

Homework

229

 Implement approximate Newton-based PP method with general non-Gaussianity measure and reproduce the 2-dimensional examples with an outlier shown in the class. You may create similar (or more interesting) data sets by yourself.

http://sugiyama-www.cs.titech.ac.jp/~sugi/data/DataAnalysis

Homework (cont.)

230

2. Prove that the approximate Newton updating rule is given by

$$oldsymbol{b} \longleftarrow rac{1}{n}oldsymbol{b}\sum_{i=1}^n g'(\langle oldsymbol{b}, \widetilde{oldsymbol{x}}_i
angle) - rac{1}{n}\sum_{i=1}^n \widetilde{oldsymbol{x}}_i g(\langle oldsymbol{b}, \widetilde{oldsymbol{x}}_i
angle)$$

under the following approximation:

$$\frac{1}{n}\sum_{i=1}^{n}\widetilde{\boldsymbol{x}}_{i}\widetilde{\boldsymbol{x}}_{i}^{\top}g'(\langle \boldsymbol{b},\widetilde{\boldsymbol{x}}_{i}\rangle) \approx \frac{1}{n}\sum_{i=1}^{n}g'(\langle \boldsymbol{b},\widetilde{\boldsymbol{x}}_{i}\rangle)\boldsymbol{I}_{d}$$

Schedule

June 25th: Projection Pursuit (2)

- Application Deadline to Mini-Conference
- July 2nd: Independent Component Analysis
- July 9th: Preparation for Mini-Conference
- July 16th: Mini-Conference Day 1
- July 23rd: Mini-Conference Day 2