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Projection Pursuit 209

Find the most non-Gaussian direction.

Original formulation: maximize distance
of kurtosis from 3
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Gradient ascent algorithm
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Drawbacks of Gradient Method!©

Choice of ¢ affects speed of convergence.
e If £ Is small: Slow convergence

e If ¢ Is large: Fast but less accurate
Appropriately choosing ¢ is not easy in
practice.

Demonstrations:

e demo(1): appropriate &

e demo(2): small ¢

e demo(3): large ¢




Alternative Formulation 44

Maximize or minimize kurtosis
_ Iy ~ 4 : 2 _
® Y, .. = argmax {n Z(b, x;) } subject to ||b||* =1

beRd i—1

~ aremin | 256,554 | subs 2 _
® ,,, =argmin {n > (b,z;) } subject to ||b||” =1

beR4 i—1

Pis given by ¢,,..0r Y, .



Lagrangian 212

In either minimization or maximization case,
Lagrangian Is given by

Lb,A) = -3 (b, &) + A(b]2 ~ 1)

n -
=1

Stationary (necessary) condition:
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We want to find p such that
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Newton Method (1-Dim.) 23

Problem: Find 4 such that f(b) =0

fﬁTangentHne
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Newton Method (Multi-Dim.) 44

Problem: Find p such that f(b) =0

1
br4+1 <— by — (% ) f(br)
b—b),

Note:
o f(b) IS a d -dimensional vector.

o g_f IS a d -dimensional matrix.
b



Newton-Based PP Method 4>

In the current setting,

f(b) = % Z zi(b,2;)” +2)b

1=1

Of 12— T, ~ .9
B - x;x; (b,x;)” + 214

1=1

Drawbacks:
of

—1
e Calculating inverse <%) In each step Is
computationally demanding.

e )\ IS unknown.



Approximation 216
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Calculating inverse Is easy!
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Approximation (cont.) 4%/

4~ . Of
f(b) = 5;%@, ;)3 4+ 2\b S~ (12+20) I
Approximate updating rule is given by

2 ] —
6—|-)\<3 nZw(,w))

1=1

b Is later normalized, so the scaling factor

can be dropped: l~—_ ,. ~ .3
b+— 3b— Ezmi<b,wi>

1=1
he update rule does not depend on \'!




Approximate Newton-Based <*®
PP Method

Problem to be solved:
f(b) =0 subject to ||b]* = 1
Repeat until convergence:

e Update p by approximate Newton method to
satisfy the stationary point conditiondL/db =0 :

1 n
b+—3b— =) x;(bx;)°

e Modify p to satisfy ||b|| =1
b «— b/||b|



Examples 219

Demonstrations:
e demo(1l): Gradient ascent with appropriate ¢
e demo(4): Approximate Newton

Approximate Newton
e IS much faster than gradient ascent.
e does not include any tuning parameter!



Outliers 220

Outliers: Irregular large values

If a Gaussian component contains outliers,
Its non-Gaussianity becomes very large
since kurtosis contains 4th power.
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Examples 221

Without outlier With single outlier

A single outlier can totally corrupt the resuilt.
Influence of outliers needs to be reduced!



General Non-Gaussian Measuré&

For some function G(s), we define a
general non-Gaussian measure by

> 6.3

G(s) = s* corresponds to Kurtosis.

To suppress the effect of outliers, using a
“gentler” function would be appropriate.



General Non-Gaussian Measuréé

Examples of smooth functions:

e G(s) = log cosh(s)
« G(s) = — exp(~5*/2)

\/
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Approximate Newton Proceduré&*

Approximate Newton procedure for centered
and sphered data:

e Update p to satisfy the stationary-point condition:

9(s) = G'(s)
be %bzg«b, £) > &ig((b.:))
= - (Homework)

e Modify p to satisfy ||b|| =1
b «— b/||b|



Derivatives 225

Derivatives:
° (84)/ _ 483
(45%) = 125
¢ (log cosh(s))’ = tanh(s)
(tanh(s))' =1 — tanh2(s)
exp(—s°/2))" = sexp(—s°/2)
sexp(—s/2)) = (1 — s°) exp(—s°/2)

(—
(



Examples 226

Approximate Newton with Kurtosis:

Approximate Newton with log(cosh) Is
robust against outliers!



Extracting Several 221

Non-Gaussian Directions

Running the algorithm many times from
different initial points may give different non-
Gaussian directions.

However, this Is not computationally efficient.
Another idea: Find orthogonal directions
This Is achieved by modifying the direction as

b%bz ¢/+/
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Full Algorithm 228

Center and sphere samples: X = (XH?X) : XH
For k=1,2,....m
e Repeat until convergence:

o b b3 - % > Fg((0,7)

—~—

® b+ b— Z X = (F1|@a| - |#n)
X = (z1|za| - - |20)
o b+— b/||b]| — 1
® Y, =0>b n |
Embed the data by I,,: n-dimensional identity matrix

1,,«n: n X n matrix with all ones
1 1,,: n-dimensional vector with all ones

Z=Bpp(z — X1,
P Bl A g @l )T



Homework 229

Implement approximate Newton-based PP
method with general non-Gaussianity
measure and reproduce the 2-dimensional
examples with an outlier shown in the class.

You may create similar (or more

Interesting) data sets by yourself.
http://suglyama-www.cs.titech.ac.jp/~sugi/data/DataAnalysis

" Data Set 3 4! Data Set 5
A ERER I
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Homework (cont.) 230

Prove that the approximate Newton
updating rule is given by

1. & _ 1 _
b < ang’(<b, Zi)) — — > @ig((b, 7))
1=1 1=1

under the following approximation:

n

1
=N %z ¢ (b, Z;)) Zg ((b, x;))
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Schedule 231

June 25™: Projection Pursuit (2)
e Application Deadline to Mini-Conference

Ju
Ju
Ju
Ju

y 2hd: Independent Component Analysis
y 9t: Preparation for Mini-Conference

y 16™: Mini-Conference Day 1

y 23" Mini-Conference Day 2



