Advanced Data Analysis: Projection Pursuit (2)

Masashi Sugiyama (Computer Science)

W8E-406, sugi@cs.titech.ac.jp
http://sugiyama-www.cs.titech.ac.jp/~sugi

Projection Pursuit

209

- Find the most non-Gaussian direction.
- Original formulation: maximize distance of kurtosis from 3
$\psi=\underset{\boldsymbol{b} \in \mathbb{R}^{d}}{\operatorname{argmax}}\left(\frac{1}{n} \sum_{i=1}^{n}\left\langle\boldsymbol{b}, \widetilde{\boldsymbol{x}}_{i}\right\rangle^{4}-3\right)^{2} \quad$ subject to $\|\boldsymbol{b}\|=1$
■ Gradient ascent algorithm
- $\boldsymbol{b} \longleftarrow \boldsymbol{b}+\varepsilon\left(\frac{1}{n} \sum_{i=1}^{n}\left\langle\boldsymbol{b}, \widetilde{\boldsymbol{x}}_{i}\right\rangle^{4}-3\right) \frac{1}{n} \sum_{i=1}^{n} \widetilde{\boldsymbol{x}}_{i}\left\langle\boldsymbol{b}, \widetilde{\boldsymbol{x}}_{i}\right\rangle^{3}$
- $b \longleftarrow b /\|b\|$

Drawbacks of Gradient Method ${ }^{10}$

\square Choice of ε affects speed of convergence.

- If ε is small: Slow convergence
- If ε is large: Fast but less accurate

■ Appropriately choosing ε is not easy in practice.

- Demonstrations:
- demo(1): appropriate ε
- demo(2): small ε
- demo(3): large ε

Alternative Formulation

Maximize or minimize kurtosis

$$
\begin{aligned}
& \text { - } \boldsymbol{\psi}_{\max }=\underset{\boldsymbol{b} \in \mathbb{R}^{d}}{\operatorname{argmax}}\left[\frac{1}{n} \sum_{i=1}^{n}\left\langle\boldsymbol{b}, \widetilde{\boldsymbol{x}}_{i}\right\rangle^{4}\right] \text { subject to }\|\boldsymbol{b}\|^{2}=1 \\
& \text { - } \boldsymbol{\psi}_{\text {min }}=\underset{\boldsymbol{b} \in \mathbb{R}^{d}}{\operatorname{argmin}}\left[\frac{1}{n} \sum_{i=1}^{n}\left\langle\boldsymbol{b}, \widetilde{\boldsymbol{x}}_{i}\right\rangle^{4}\right] \text { subject to }\|\boldsymbol{b}\|^{2}=1
\end{aligned}
$$

$\square \psi$ is given by $\psi_{\max }$ or $\psi_{\min }$.

Lagrangian

- In either minimization or maximization case, Lagrangian is given by

$$
L(\boldsymbol{b}, \lambda)=\frac{1}{n} \sum_{i=1}^{n}\left\langle\boldsymbol{b}, \widetilde{\boldsymbol{x}}_{i}\right\rangle^{4}+\lambda\left(\|\boldsymbol{b}\|^{2}-1\right)
$$

\square Stationary (necessary) condition:

$$
\frac{\partial L}{\partial \boldsymbol{b}}=\frac{4}{n} \sum_{i=1}^{n} \widetilde{\boldsymbol{x}}_{i}\left\langle\boldsymbol{b}, \widetilde{\boldsymbol{x}}_{i}\right\rangle^{3}+2 \lambda \boldsymbol{b}=\mathbf{0}
$$

\square We want to find b such that

$$
\frac{\partial L}{\partial \boldsymbol{b}}=\mathbf{0}
$$

Newton Method (1-Dim.)

Problem: Find b such that $f(b)=0$

Tangent line

Tangent line

$$
b_{k+1} \longleftarrow b_{k}-\frac{f\left(b_{k}\right)}{f^{\prime}\left(b_{k}\right)}
$$

Newton Method (Multi-Dim.) ${ }^{214}$

■ Problem: Find \boldsymbol{b} such that $f(\boldsymbol{b})=\mathbf{0}$

$$
\boldsymbol{b}_{k+1} \longleftarrow \boldsymbol{b}_{k}-\left(\left.\frac{\partial f}{\partial \boldsymbol{b}}\right|_{\boldsymbol{b}=\boldsymbol{b}_{k}}\right)^{-1} f\left(\boldsymbol{b}_{k}\right)
$$

- Note:
- $f(\boldsymbol{b})$ is a d-dimensional vector.
- $\frac{\partial f}{\partial \boldsymbol{b}}$ is a d-dimensional matrix.

Newton-Based PP Method ${ }^{215}$

\square In the current setting,

$$
\begin{aligned}
& f(\boldsymbol{b})=\frac{4}{n} \sum_{i=1}^{n} \widetilde{\boldsymbol{x}}_{i}\left\langle\boldsymbol{b}, \widetilde{\boldsymbol{x}}_{i}\right\rangle^{3}+2 \lambda \boldsymbol{b} \\
& \frac{\partial f}{\partial \boldsymbol{b}}=\frac{12}{n} \sum_{i=1}^{n} \widetilde{\boldsymbol{x}}_{i} \widetilde{\boldsymbol{x}}_{i}^{\top}\left\langle\boldsymbol{b}, \widetilde{\boldsymbol{x}}_{i}\right\rangle^{2}+2 \lambda \boldsymbol{I}_{d}
\end{aligned}
$$

■ Drawbacks:

- Calculating inverse $\left(\frac{\partial f}{\partial b}\right)^{-1}$ in each step is computationally demanding.
- λ is unknown.

Approximation

216
$\square \frac{1}{n} \sum_{i=1}^{n} \widetilde{\boldsymbol{x}}_{i} \widetilde{\boldsymbol{x}}_{i}^{\top}\left\langle\boldsymbol{b}, \widetilde{\boldsymbol{x}}_{i}\right\rangle^{2} \approx\left(\frac{1}{n} \sum_{i=1}^{n} \widetilde{\boldsymbol{x}}_{i} \widetilde{\boldsymbol{x}}_{i}^{\top}\right)\left(\frac{1}{n} \sum_{i=1}^{n}\left\langle\boldsymbol{b}, \widetilde{\boldsymbol{x}}_{i}\right\rangle^{2}\right)=\boldsymbol{I}_{d}$
$\frac{1}{n} \sum_{i=1}^{n} \widetilde{\boldsymbol{x}}_{i} \widetilde{\boldsymbol{x}}_{i}^{\top}=\boldsymbol{I}_{d}\|\boldsymbol{b}\|=1$

- Then

$$
\begin{aligned}
\frac{\partial f}{\partial \boldsymbol{b}} & =\frac{12}{n} \sum_{i=1}^{n} \widetilde{\boldsymbol{x}}_{i} \widetilde{\boldsymbol{x}}_{i}^{\top}\left\langle\boldsymbol{b}, \widetilde{\boldsymbol{x}}_{i}\right\rangle^{2}+2 \lambda \boldsymbol{I}_{d} \\
& \approx(12+2 \lambda) \boldsymbol{I}_{d}
\end{aligned}
$$

\square Calculating inverse is easy!

Approximation (cont.)

217

$$
f(\boldsymbol{b})=\frac{4}{n} \sum_{i=1}^{n} \widetilde{\boldsymbol{x}}_{i}\left\langle\boldsymbol{b}, \widetilde{\boldsymbol{x}}_{i}\right\rangle^{3}+2 \lambda \boldsymbol{b} \quad \frac{\partial f}{\partial \boldsymbol{b}} \approx(12+2 \lambda) \boldsymbol{I}_{d}
$$

- Approximate updating rule is given by

$$
\boldsymbol{b} \longleftarrow \frac{2}{6+\lambda}\left(3 \boldsymbol{b}-\frac{1}{n} \sum_{i=1}^{n} \widetilde{\boldsymbol{x}}_{i}\left\langle\boldsymbol{b}, \widetilde{\boldsymbol{x}}_{i}\right\rangle^{3}\right)
$$

$\square \boldsymbol{b}$ is later normalized, so the scaling factor can be dropped:

$$
\boldsymbol{b} \longleftarrow 3 \boldsymbol{b}-\frac{1}{n} \sum_{i=1}^{n} \widetilde{\boldsymbol{x}}_{i}\left\langle\boldsymbol{b}, \widetilde{\boldsymbol{x}}_{i}\right\rangle^{3}
$$

\square The update rule does not depend on λ !

Approximate Newton-Based ${ }^{218}$ PP Method

- Problem to be solved:

$$
f(\boldsymbol{b})=\mathbf{0} \quad \text { subject to }\|\boldsymbol{b}\|^{2}=1
$$

- Repeat until convergence:
- Update \boldsymbol{b} by approximate Newton method to satisfy the stationary point condition $\partial L / \partial \boldsymbol{b}=\mathbf{0}$:

$$
\boldsymbol{b} \longleftarrow 3 \boldsymbol{b}-\frac{1}{n} \sum_{i=1}^{n} \widetilde{\boldsymbol{x}}_{i}\left\langle\boldsymbol{b}, \widetilde{\boldsymbol{x}}_{i}\right\rangle^{3}
$$

- Modify \boldsymbol{b} to satisfy $\|\boldsymbol{b}\|=1$:

$$
b \longleftarrow b /\|b\|
$$

Examples

219

- Demonstrations:
- demo(1): Gradient ascent with appropriate ε
- demo(4): Approximate Newton
\square Approximate Newton
- is much faster than gradient ascent.
- does not include any tuning parameter!

Outliers

220

■ Outliers: Irregular large values

- If a Gaussian component contains outliers, its non-Gaussianity becomes very large since kurtosis contains 4th power.

Examples

221

Without outlier

With single outlier
\square A single outlier can totally corrupt the result. - Influence of outliers needs to be reduced!

General Non-Gaussian Measurê3²

- For some function $G(s)$, we define a general non-Gaussian measure by

$$
\frac{1}{n} \sum_{i=1}^{n} G\left(\left\langle\boldsymbol{b}, \widetilde{\boldsymbol{x}}_{i}\right\rangle\right)
$$

$\square G(s)=s^{4}$ corresponds to Kurtosis.

- To suppress the effect of outliers, using a "gentler" function would be appropriate.

General Non-Gaussian Measurể³

Examples of smooth functions:

- $G(s)=\log \cosh (s)$
- $G(s)=-\exp \left(-s^{2} / 2\right)$

Approximate Newton Procedur ${ }^{224}$

Approximate Newton procedure for centered and sphered data:

- Update \boldsymbol{b} to satisfy the stationary-point condition:

$$
\begin{array}{r}
g(s)=G^{\prime}(s) \\
\boldsymbol{b} \longleftarrow \frac{1}{n} \boldsymbol{b} \sum_{i=1}^{n} g^{\prime}\left(\left\langle\boldsymbol{b}, \widetilde{\boldsymbol{x}}_{i}\right\rangle\right)-\frac{1}{n} \sum_{i=1}^{n} \widetilde{\boldsymbol{x}}_{i} g\left(\left\langle\boldsymbol{b}, \widetilde{\boldsymbol{x}}_{i}\right\rangle\right) \\
\text { (Homework) }
\end{array}
$$

- Modify \boldsymbol{b} to satisfy $\|\boldsymbol{b}\|=1$:

$$
b \longleftarrow b /\|b\|
$$

Derivatives

Derivatives:

- $\left(s^{4}\right)^{\prime}=4 s^{3}$

$$
\left(4 s^{3}\right)^{\prime}=12 s^{2}
$$

- $(\log \cosh (s))^{\prime}=\tanh (s)$
$(\tanh (s))^{\prime}=1-\tanh ^{2}(s)$
- $\left(-\exp \left(-s^{2} / 2\right)\right)^{\prime}=s \exp \left(-s^{2} / 2\right)$
$\left(s \exp \left(-s^{2} / 2\right)\right)^{\prime}=\left(1-s^{2}\right) \exp \left(-s^{2} / 2\right)$

Examples

226
\square Approximate Newton with Kurtosis:

$$
g(s)=4 s^{3}
$$

\square Approximate Newton with $\log ($ cosh $)$:

$$
g(s)=\tanh (s)
$$

- Approximate Newton with log(cosh) is robust against outliers!

Extracting Several Non-Gaussian Directions

- Running the algorithm many times from different initial points may give different nonGaussian directions.
However, this is not computationally efficient.
- Another idea: Find orthogonal directions
- This is achieved by modifying the direction as

$$
\boldsymbol{b} \longleftarrow \boldsymbol{b}-\sum_{i=1}^{k-1}\left\langle\boldsymbol{b}, \boldsymbol{\psi}_{i}\right\rangle \boldsymbol{\psi}_{i}
$$

Full Algorithm

\square Center and sphere samples: $\widetilde{\boldsymbol{X}}=\left(\boldsymbol{X} \boldsymbol{H}^{2} \boldsymbol{X}\right)^{-\frac{1}{2}} \boldsymbol{X} \boldsymbol{H}$
For $k=1,2, \ldots, m$

- Repeat until convergence:

$$
\begin{array}{rlrl}
* \boldsymbol{b} \longleftarrow \frac{1}{n} \boldsymbol{b} \sum_{i=1}^{n} g^{\prime}\left(\left\langle\boldsymbol{b}, \widetilde{\boldsymbol{x}}_{i}\right\rangle\right)-\frac{1}{n} \sum_{i=1}^{n} \widetilde{\boldsymbol{x}}_{i} g\left(\left\langle\boldsymbol{b}, \widetilde{\boldsymbol{x}}_{i}\right\rangle\right) \\
\bullet \boldsymbol{b} \longleftarrow \boldsymbol{b}-\sum_{i=1}^{k-1}\left\langle\boldsymbol{b}, \boldsymbol{\psi}_{i}\right\rangle \boldsymbol{\psi}_{i} & \widetilde{\boldsymbol{X}} & =\left(\widetilde{\boldsymbol{x}}_{1}\left|\widetilde{\boldsymbol{x}}_{2}\right| \cdots \mid \widetilde{\boldsymbol{x}}_{n}\right) \\
\bullet \boldsymbol{b} \longleftarrow \boldsymbol{b} /\|\boldsymbol{b}\| & \boldsymbol{X} & =\left(\boldsymbol{x}_{1}\left|\boldsymbol{x}_{2}\right| \cdots \mid \boldsymbol{x}_{n}\right) \\
-\boldsymbol{\psi}_{k} & =\boldsymbol{b} & \boldsymbol{H} & =\boldsymbol{I}_{n}-\frac{1}{n} \mathbf{1}_{n \times n}
\end{array}
$$

Embed the data \boldsymbol{x} by
\boldsymbol{I}_{n} : n-dimensional identity matrix

$$
\mathbf{1}_{n \times n}: n \times n \text { matrix with all ones }
$$

$$
\overline{\boldsymbol{z}}=\boldsymbol{B}_{P P}\left(\boldsymbol{x}-\frac{1}{n} \boldsymbol{X} \mathbf{1}_{n}\right)
$$

$$
\mathbf{1}_{n}: n \text {-dimensional vector with all ones }
$$

$$
\boldsymbol{B}_{P P}=\left(\boldsymbol{\psi}_{1}\left|\boldsymbol{\psi}_{2}\right| \cdots \mid \boldsymbol{\psi}_{m}\right)^{\top}
$$

Homework

229

1. Implement approximate Newton-based PP method with general non-Gaussianity measure and reproduce the 2-dimensional examples with an outlier shown in the class.
You may create similar (or more interesting) data sets by yourself.
http://sugiyama-www.cs.titech.ac.jp/~sugi/data/DataAnalysis

Homework (cont.)

230
2. Prove that the approximate Newton updating rule is given by

$$
\boldsymbol{b} \longleftarrow \frac{1}{n} \boldsymbol{b} \sum_{i=1}^{n} g^{\prime}\left(\left\langle\boldsymbol{b}, \widetilde{\boldsymbol{x}}_{i}\right\rangle\right)-\frac{1}{n} \sum_{i=1}^{n} \widetilde{\boldsymbol{x}}_{i} g\left(\left\langle\boldsymbol{b}, \widetilde{\boldsymbol{x}}_{i}\right\rangle\right)
$$

under the following approximation:

$$
\frac{1}{n} \sum_{i=1}^{n} \widetilde{\boldsymbol{x}}_{i} \widetilde{\boldsymbol{x}}_{i}^{\top} g^{\prime}\left(\left\langle\boldsymbol{b}, \widetilde{\boldsymbol{x}}_{i}\right\rangle\right) \approx \frac{1}{n} \sum_{i=1}^{n} g^{\prime}\left(\left\langle\boldsymbol{b}, \widetilde{\boldsymbol{x}}_{i}\right\rangle\right) \boldsymbol{I}_{d}
$$

Schedule

- June 25 ${ }^{\text {th }}$: Projection Pursuit (2)
- Application Deadline to Mini-Conference
\square July $2^{\text {nd: }}$ Independent Component Analysis
■ July $9^{\text {th }}$: Preparation for Mini-Conference
\square July 16 ${ }^{\text {th: }}$: Mini-Conference Day 1
■ July 23rd: Mini-Conference Day 2

