Advanced Data Analysis: Projection Pursuit (1)

Masashi Sugiyama (Computer Science)

W8E-406, sugi@cs.titech.ac.jp
http://sugiyama-www.cs.titech.ac.jp/~sugi

I.i.d. Samples

■ Independent and identically distributed
(i.i.d.) samples:

$$
\boldsymbol{x}_{i} \stackrel{i . i . d .}{\sim} P(\boldsymbol{x})
$$

- Independent: the joint probability is the product of each probability
- Identically distributed: each variable follow the identical distribution

$$
P\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right)=P\left(\boldsymbol{x}_{1}\right) \times \cdots \times P\left(\boldsymbol{x}_{n}\right)
$$

Gaussian Distribution

■Gaussian distribution: the probability density function is given by

$$
\phi_{\boldsymbol{\mu}, \boldsymbol{\Sigma}}(\boldsymbol{x})=\frac{1}{(2 \pi)^{\frac{d}{2}}|\boldsymbol{\Sigma}|^{\frac{1}{2}}} \exp \left(-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\right)
$$

$\square \mu, \boldsymbol{\Sigma}$:mean, covariance

$$
\begin{aligned}
& \mathbb{E}[\boldsymbol{x}]=\boldsymbol{\mu} \\
& \mathbb{E}\left[(\boldsymbol{x}-\boldsymbol{\mu})(\boldsymbol{x}-\boldsymbol{\mu})^{\top}\right]=\boldsymbol{\Sigma}
\end{aligned}
$$

- When one-dimensional,

$$
\phi_{\mu, \sigma^{2}}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)
$$

Interesting Directions 185 for Data Visualization

\square Which distribution is interesting to visualize?

- If data follows the Gaussian distribution, samples are spherically distributed.
■ Visualizing spherically distributed samples is not so interesting.
What about "non-
Gaussian" data?

Non-Gaussian Distributed Datå ${ }^{86}$

Non-Gaussian data look more interesting than Gaussian!

Uniform
(sharp edge)

Gaussian mixture
(cluster structure)

Laplacian (existence of outliers)

Projection Pursuit

■ Idea: Find the most non-Gaussian direction in the data
For this purpose, we need a criterion to measure non-Gaussianity of data as a function of projection directions.

Kurtosis

Kurtosis for a one-dimensional random variable s :

$$
\beta_{4}=\frac{\mathbb{E}\left[(s-\mathbb{E}[s])^{4}\right]}{\left(\mathbb{E}\left[(s-\mathbb{E}[s])^{2}\right]\right)^{2}}(>0)
$$

Kurtosis measures the "sharpness" of distributions.

- If tails of distribution are
- Heavy
β_{4} is large
- Light
β_{4} is small

Kurtosis (cont.)

$\square \beta_{4}=3$: Gaussian distribution
 $\square \beta_{4}<3$: Sub-Gaussian distribution
 $\square \beta_{4}>3$: Super-Gaussian distribution

Kurtosis-Based

Non-Gaussianity Measure

$$
\beta_{4}=\frac{\mathbb{E}\left[(s-\mathbb{E}[s])^{4}\right]}{\left(\mathbb{E}\left[(s-\mathbb{E}[s])^{2}\right]\right)^{2}}
$$

\square Non-Gaussianity is strong if $\left(\beta_{4}-3\right)^{2}$ is large.
Non-Gaussianity of data for direction b can be measured by letting $s=\langle\boldsymbol{b}, \boldsymbol{x}\rangle$ and $\|\boldsymbol{b}\|=1$.

PP Criterion

- In practice, we use empirical approximation:

$$
J_{P P}(\boldsymbol{b})=\left(\frac{\frac{1}{n} \sum_{i=1}^{n}\left(s_{i}-\bar{s}\right)^{4}}{\left(\frac{1}{n} \sum_{i=1}^{n}\left(s_{i}-\bar{s}\right)^{2}\right)^{2}}-3\right)^{2}
$$

$$
\begin{aligned}
& s_{i}=\left\langle\boldsymbol{b}, \boldsymbol{x}_{i}\right\rangle \\
& \bar{s}=\frac{1}{n} \sum_{i=1}^{n} s_{i}
\end{aligned}
$$

- PP criterion:

$$
\begin{aligned}
& \psi=\underset{\boldsymbol{b} \in \mathbb{R}^{d}}{\operatorname{argmax}} J_{P P}(\boldsymbol{b}) \\
& \quad \text { subject to }\|\boldsymbol{b}\|=1
\end{aligned}
$$

\square There is no known method for analytically solving this optimization problem.
\square We resort to numerical methods.

Gradient Ascent Approach ${ }^{192}$

Repeat until convergence:

- Update \boldsymbol{b} to increase $J_{P P}$:

$$
\boldsymbol{b} \longleftarrow \boldsymbol{b}+\varepsilon \frac{\partial J_{P P}}{\partial \boldsymbol{b}}
$$

- Modify \boldsymbol{b} to satisfy $\|\boldsymbol{b}\|=1$:

$$
b \longleftarrow b /\|b\|
$$

Data Centering and Sphering ${ }^{193}$

\square Centering:

$$
\overline{\boldsymbol{x}}_{i}=\boldsymbol{x}_{i}-\frac{1}{n} \sum_{j=1}^{n} \boldsymbol{x}_{j}
$$

\square Sphering (or pre-whitening):

$$
\widetilde{\boldsymbol{x}}_{i}=\left(\frac{1}{n} \sum_{i=1}^{n} \overline{\boldsymbol{x}}_{i} \overline{\boldsymbol{x}}_{i}^{\top}\right)^{-\frac{1}{2}} \overline{\boldsymbol{x}}_{i}
$$

- In matrix,

$$
\widetilde{\boldsymbol{X}}=\left(\frac{1}{n} \boldsymbol{X} \boldsymbol{H}^{2} \boldsymbol{X}^{\top}\right)^{-\frac{1}{2}} \boldsymbol{X} \boldsymbol{H}
$$

$$
\begin{array}{ll}
\widetilde{\boldsymbol{X}}=\left(\widetilde{\boldsymbol{x}}_{1}\left|\widetilde{\boldsymbol{x}}_{2}\right| \cdots \mid \widetilde{\boldsymbol{x}}_{n}\right) & \boldsymbol{X}=\left(\boldsymbol{x}_{1}\left|\boldsymbol{x}_{2}\right| \cdots \mid \boldsymbol{x}_{n}\right) \\
\boldsymbol{H}=\boldsymbol{I}_{n}-\frac{1}{n} \mathbf{1}_{n \times n} & \boldsymbol{I}_{n}: n \text {-dimensional identity matrix } \\
\mathbf{1}_{n \times n}: n \times n \text { matrix with all ones }
\end{array}
$$

Data Centering and Sphering ${ }^{194}$

By centering and sphering, the covariance matrix becomes identity:

$$
\frac{1}{n} \sum_{i=1}^{n} \widetilde{\boldsymbol{x}}_{i} \widetilde{\boldsymbol{x}}_{i}^{\top}=\boldsymbol{I}_{d}
$$

Homework: Prove it!

Simplification for Sphered Data ${ }^{95}$

- For centered and sphered samples $\left\{\widetilde{\boldsymbol{x}}_{i}\right\}_{i=1}^{n}$,

$$
\begin{aligned}
& J_{P P}(\boldsymbol{b})=\left(\frac{1}{n} \sum_{i=1}^{n}\left\langle\boldsymbol{b}, \widetilde{\boldsymbol{x}}_{i}\right\rangle^{4}-3\right)^{2} \\
& \frac{\partial J_{P P}}{\partial \boldsymbol{b}}=2\left(\frac{1}{n} \sum_{i=1}^{n}\left\langle\boldsymbol{b}, \widetilde{\boldsymbol{x}}_{i}\right\rangle^{4}-3\right)\left(\frac{4}{n} \sum_{i=1}^{n} \widetilde{\boldsymbol{x}}_{i}\left\langle\boldsymbol{b}, \widetilde{\boldsymbol{x}}_{i}\right\rangle^{3}\right)
\end{aligned}
$$

- The gradient update rule is

$$
\boldsymbol{b} \longleftarrow \boldsymbol{b}+\varepsilon\left(\frac{1}{n} \sum_{i=1}^{n}\left\langle\boldsymbol{b}, \widetilde{\boldsymbol{x}}_{i}\right\rangle^{4}-3\right) \frac{1}{n} \sum_{i=1}^{n} \widetilde{\boldsymbol{x}}_{i}\left\langle\boldsymbol{b}, \widetilde{\boldsymbol{x}}_{i}\right\rangle^{3}
$$

■ Don't forget normalization: $\boldsymbol{b} \longleftarrow \boldsymbol{b} /\|\boldsymbol{b}\|$

- Homework: Derive the gradient update rule!

Examples

$\square d=2, \quad m=1, \quad n=1000$
$\square \boldsymbol{x}=\binom{s}{t}$
$\square s \sim N(0,1)$
$\square t \sim U(-\sqrt{3}, \sqrt{3})$

Examples (cont.)

$\square d=2, \quad m=1, \quad n=1000$

$$
\boldsymbol{x}=\binom{s}{t}
$$

$\square s \sim N(0,1)$
$\square t \sim \operatorname{Lap}(0,1)$

Homework

1. Implement PP and reproduce the 2dimensional examples shown in the class.
http://sugiyama-www.cs.titech.ac.jp/~sugi/data/DataAnalysis

You may create similar (and more interesting) data sets by yourself.

Homework (cont.)

2. Prove the following for centered and sphered samples $\left\{\widetilde{\boldsymbol{x}}_{i}\right\}_{i=1}^{n}$:
A) Covariance matrix is given by

$$
\frac{1}{n} \sum_{i=1}^{n} \widetilde{\boldsymbol{x}}_{i} \widetilde{\boldsymbol{x}}_{i}^{\top}=\boldsymbol{I}_{d}
$$

B) $J_{P P}$ under $\|\boldsymbol{b}\|=1$ is given by

$$
J_{P P}(\boldsymbol{b})=\left(\frac{1}{n} \sum_{i=1}^{n}\left\langle\boldsymbol{b}, \widetilde{\boldsymbol{x}}_{i}\right\rangle^{4}-3\right)^{2}
$$

c) Gradient $\partial J_{P P} / \partial \boldsymbol{b}$ is given by

$$
\frac{\partial J_{P P}}{\partial \boldsymbol{b}}=2\left(\frac{1}{n} \sum_{i=1}^{n}\left\langle\boldsymbol{b}, \widetilde{\boldsymbol{x}}_{i}\right\rangle^{4}-3\right)\left(\frac{4}{n} \sum_{i=1}^{n} \widetilde{\boldsymbol{x}}_{i}\left\langle\boldsymbol{b}, \widetilde{\boldsymbol{x}}_{i}\right\rangle^{3}\right)
$$

Notification of Final Assignment

- Data Analysis: Apply dimensionality reduction or clustering techniques to your own data set and "mine" something interesting!

■ Deadline: July 31 ${ }^{\text {st }}$ (Wed) 17:00

- Bring your printed report to W8E-406.
- E-mail submission is also possible (though not recommended).

Mini-Conference on Data Analysis

■ On July $16^{\text {th }}$ and $23^{\text {rd }}$, we have a miniconference on data analysis.

- Some of the students may present their data analysis results.
- Those who give a talk at the conference will have very good grades!

Mini-Conference on Data Analysis

■ Application procedure: On June $25^{\text {th }}$, just say to me "I want to give a talk!".
Presentation: approx. 10 min (?)

- Description of your data
- Methods to be used
- Outcome
\square Slides should be in English.
Better to speak in English, but Japanese may also be allowed (perhaps your friends will provide simultaneous translation!).

Schedule

■ June 18 ${ }^{\text {th: }}$: Preparation for Mini-Conference
■ June 25 ${ }^{\text {th }}$: Projection Pursuit (2)

- Application Deadline to Mini-Conference
\square July $2^{\text {nd: }}$ Independent Component Analysis
\square July $9^{\text {th }}$: Preparation for Mini-Conference
- July 16 ${ }^{\text {th: }}$: Mini-Conference Day 1

■ July 23rd: Mini-Conference Day 2

