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Kernel K-Means 154

Ordinary k-means clustering does not work well
If the data crowd has non-convex shapes.

Kernel k-means is more flexible.

However, its solution depends crucially on
initial cluster assignments since k-means Is
performed In a high-dimensional feature space.
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Similarity-Based Clustering *>°

Similarity matrix W : W, ;Is large

If ;and x; are similar.

Assumptions on W .

e Symmetric: W, ; = W,

e Non-negative: W, ; > 0

e Positive semi-definite:Vy, (Wy,y) >0



Examples of Similarity Matrix *>°

Wi; = Wi, z;)

Distance-based.

Wz, x;) = exp(— i — 2;]?/7%) 7> 0
Nearest-neighbor-based:
W(x;,x;) =1 if x; is a k-nearest neighbor
of z,; or x; is a k’-nearest neighbor of x;.
Otherwise W (x;,x;) = 0.
Combination of two Is also possible.

W (x;, ;) = { SXP(_H% —z;|*/7?)




Local Scaling Heuristic

vi . scaling around the sample x;
_ (k")
Vi =z — x|
(k") : k/ : :
L, °:K-thnearest neighbor sample of &;

Local scaling based similarity matrix:
W (s, 2;) = exp(—|le; —a;[*/(v:7;))

A heuristic choiceis k' = 7.



Cut Criterion 158

ldea: Minimize sum of similarities between
samples inside and outside the cluster

argmin S: S: Z W (x,z")

{Ci}i1 | i=1 weC; o' C;

From a graph-theoretic viewpoint, this
corresponds to finding the minimum cut.




Cut Criterion (cont.) 159

argmmy Z W(x,z")

{Ci }f 1 1= 1:13€C x' ZC;

Mincut method tends to give a cluster
with a very small number of samples.

Actual
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Normalized Cut Criterion 1°9

ldea: Penalize small clusters

argmin |J eyt
{C’i}flle

oo = 3 [ e Ewe W)
ZiB”ECi Z?:l W(m//, 33])

Denominator is a normalization factor, which
IS the sum of similarities between samples
Inside the class and all samples.

1=1




Normalized Cut As Weighted !
Kernel K-Means (Homework)
Weighted kernel k-means criterion with

e Weight: d(x ZW x,T;)

e Kernel: K (wuwg) Wiz, x;)/(d(z;)d(z;))
shares the same optimal solution as
the normalized cut criterion:

- _
argmin [Jcyt] = argmin S: S: d(z)||p(x) — ;]|
{Ci}r],;c:1 {C’i}f?:l L 1=1 el i

== Y @) s= ) d@)

SZ w’ECz wEC'L




Algorithm 1 162

Clustering based on the normalized cut
criterion can be obtained by weighted kernel k-
means algorithm with

_ W(wivmj) 7)) = - T T
K(xz;,x;) d(z)d(z;) d( )—ZW( , ;)

Randomly initialize partition: {C;}%_,

Update cluster assignments until convergence:
Lr; — Ct

1
t = argmin | —— E d(x — E '
rgmin . K(xz;,x % 2 K(x',x")

1




Normalized Cut As Weighted 1¢3
Kernel K-Means (cont.)

Normalized-cut clustering looks reasonable.

But it is solved by weighted kernel k-means
In the end.

Thus, the drawback of kernel k-means
(strong dependency on Initial cluster
assignments) still remains.



Dual Formulation 164

a{lég]il:lfl (TN cut] (Homework)

Instead of optimizing {C;}*_, , we optimize
cluster indicator A : 1 iz cC
A— J v

Ai {O otherwise

An optimizer of Jy ., IS given by

. L — D - W
argmin |tr(ALA" ] : n
AEgBan { ( ) D = dlag<zj:1 Wi’j)

subject to ADA' = I,

BExn - Set of all £ x n matrices such that
one of the elements In each column
takes one and others are all zero



Relation to Laplacian Eigenmap°
Let us allow A to take any real values.

Then the relaxed problem is given as

min [tr(ALAT)]

subject to ADA' = I,

L=D-W D= diag(Z?:l Wi.;)
This Is equivalent to Laplacian eigenmap!

Implication: Laplacian eigenmap embedding
“softly” clusters the data samples!



Algorithm 2 (Spectral Clustering}®

Embed {z;};"; into (k — 1)- dimensional
space by Laplacian eigenmap embedding.

Cluster the embedded samples by (non-
kernelized) k-means clustering algorithm.

Kernel k-means had a drawback that the
clustering results crucially depend on
initial cluster assignments.

Since Laplacian eigenmap has a soft
clustering property, the above algorithm is
less dependent on initialization.



Examples 167

Original samples Clustered samples

Laplacian

. Ordinary
eigenmap

k-means

o o




Examples (cont.) 168

Original samples Clustered samples

Laplacian

. Ordinary
eigenmap

k-means

) — e




Summary of Clustering Method$*®

Three different clustering families
result in the same criterion!!

Weighted kernel k-means

Normalized cut

“*Hard” Laplacian eigenmap



Homework 170

Implement Algorithm 2 (spectral clustering)
and reproduce the 2-dimensional examples

shown In the class.
http://sugiyama-www.cs.titech.ac.|p/~sugi/data/DataAnalysis

Data Set 8 Data Set 9

Test the algorithm with your own (artificial or
real) data and analyze their characteristics.



Homework (cont.) i

Prove that weighted kernel k-means
criterion with

o Weight: d(x ZW x,T;)

o Kernel: K(a:z,mg) Wz, xz;)/(d(xz;)d(z;))
shares the same optimal solution as
the normalized cut criterion:

argmin |Jney:| = argmin [Jyy g
{Ci}?zl {Cz}le



Homework (cont.) L1l
Hint:
Express all elements in Jyy s In terms of
the affinity W(z,x'), e.g.,

S; = Z ZW(:B", ;)

x'’'eC; j=1

K = i Z d(z")p(z')
s =3 X dia)lo@) -

i=1 2€C; Si = d(x)

1
S

C;

xTC

J _ i | ZmECi megzci ( )
Ncut — 7

i—1 _Zw”ECi Zj::l W(ZB , :BJ)_




Homework (cont.) L1

Prove that an optimizer of J5.,; IS given by

argmin {tr(ALAT)]
AeBkxn

subject to ADA' = I,

BExn - Set of all k¥ x n matrices such that
one of the elements in each column
takes one and others are all zero

L=D-W 1 ifx; €C;
0 o.w.

. n A =
D = dlag(ijl W) ?



Homework (cont.) L4

Hint:

Let A = (ai|as|---|az) " and express all elements
N Jy.,; INtermsof {a;}F ,,e.q.,

)3 YWCE @j) = (Wai, 1,) = (Da;, a;)

x''eC; j=1

INcut = i  Yaee, Large, V(@ @)
i—=1 _Zw”ECi Z?Zl W(m/,7 mj)_
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June 18th:
June 25th:
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Schedule 175

jection Pursuit (1)
naration for Mini-Conference
jection Pursuit (2)

e Application Deadline to Mini-Conference

July 2"9: Independent Component Analysis
July 9t Preparation for Mini-Conference
July 16™: Mini-Conference Day 1

July 23"d: Mini-Conference Day 2




