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154Kernel K-MeansKernel K-Means
Ordinary k-means clustering does not work well 
if the data crowd has non-convex shapes.
Kernel k-means is more flexible.
However, its solution depends crucially on  
initial cluster assignments since k-means is 
performed in a high-dimensional feature space.



155Similarity-Based ClusteringSimilarity-Based Clustering

Similarity matrix       :          is large      
if     and      are similar.
Assumptions on       :

Symmetric: 
Non-negative:
Positive semi-definite:

Wi,jW
xi xj

W
Wi,j = Wj,i

Wi,j ≥ 0
∀y, hWy,yi ≥ 0



156Examples of Similarity MatrixExamples of Similarity Matrix

Distance-based: 

Nearest-neighbor-based:
if      is a    -nearest neighbor 

of      or      is a    -nearest neighbor of     . 
Otherwise                      .
Combination of two is also possible.

xj

xi
xj xi

Wi,j =W (xi,xj)

W (xi,xj) = 1

W (xi,xj) = 0

k0

k0

W (xi,xj) = exp(−kxi − xjk2/γ2) γ > 0

W (xi,xj) =

½
exp(−kxi − xjk2/γ2)
0



157Local Scaling HeuristicLocal Scaling Heuristic
: scaling around the sample

Local scaling based similarity matrix:

A heuristic choice is           .

W (xi,xj) = exp(−kxi − xjk2/(γiγj))

γi xi

γi = kxi − x(k
0)

i k

x
(k0)
i :  -th nearest neighbor sample of xi

k0 = 7

k0



158Cut CriterionCut Criterion
Idea: Minimize sum of similarities between 
samples inside and outside the cluster

From a graph-theoretic viewpoint, this 
corresponds to finding the minimum cut.

argmin
{Ci}ki=1

⎡⎣ kX
i=1

X
x∈Ci

X
x0 6∈Ci

W (x,x0)

⎤⎦



159Cut Criterion (cont.)Cut Criterion (cont.)

Mincut method tends to give a cluster 
with a very small number of samples.

Actual
solution

Desired
solution

argmin
{Ci}ki=1

kX
i=1

X
x∈Ci

X
x0 6∈Ci

W (x,x0)



160Normalized Cut CriterionNormalized Cut Criterion

Idea: Penalize small clusters

Denominator is a normalization factor, which 
is the sum of similarities between samples 
inside the class and all samples.

JNcut =

kX
i=1

" P
x∈Ci

P
x0 6∈CiW (x,x

0)P
x00∈Ci

Pn
j=1W (x

00, xj)

#argmin
{Ci}ki=1

[JNcut]



161Normalized Cut As Weighted
Kernel K-Means

Normalized Cut As Weighted
Kernel K-Means

Weighted kernel k-means criterion with

Weight:

Kernel:
shares the same optimal solution as 
the normalized cut criterion:

d(x) =

nX
i=1

W (x,xi)

argmin
{Ci}ki=1

[JNcut] = argmin
{Ci}ki=1

"
kX
i=1

X
x∈Ci

d(x)kφ(x)− μik2
#

μi =
1

si

X
x0∈Ci

d(x0)φ(x0) si =
X
x∈Ci

d(x)

(Homework)

K(xi,xj) =W (xi,xj)/(d(xi)d(xj))



162Algorithm 1Algorithm 1
Clustering based on the normalized cut 
criterion can be obtained by weighted kernel k-
means algorithm with

1. Randomly initialize partition:
2. Update cluster assignments until convergence:

xj → Ct

{Ci}ki=1

d(x) =

nX
i=1

W (x,xi)

t = argmin
i

⎡⎣− 2
si

X
x0∈Ci

d(x0)K(xj ,x0) +
1

s2i

X
x0,x00∈Ci

d(x0)d(x00)K(x0,x00)

⎤⎦

K(xi,xj) =
W (xi,xj)

d(xi)d(xj)



163Normalized Cut As Weighted
Kernel K-Means (cont.)

Normalized Cut As Weighted
Kernel K-Means (cont.)

Normalized-cut clustering looks reasonable.
But it is solved by weighted kernel k-means 
in the end.
Thus, the drawback of kernel k-means 
(strong dependency on initial cluster 
assignments) still remains.



164Dual FormulationDual Formulation

Instead of optimizing              , we optimize 
cluster indicator :

An optimizer of           is given by

subject to ADA> = Ik

argmin
{Ci}ki=1

[JNcut]

: Set of all           matrices such that
one of the elements in each column
takes one and others are all zero

{Ci}ki=1
A

JNcut

(Homework)

Ai,j =

½
1 if xj ∈ Ci
0 otherwise

argmin
A∈Bk×n

h
tr(ALA>)

i

Bk×n k × n

D = diag(
Pn

j=1Wi,j)
L = D −W



165Relation to Laplacian EigenmapRelation to Laplacian Eigenmap
Let us allow     to take any real values.
Then the relaxed problem is given as

This is equivalent to Laplacian eigenmap!
Implication: Laplacian eigenmap embedding 
“softly” clusters the data samples!

subject to ADA> = Ik

A

min
A∈Rk×n

h
tr(ALA>)

i

D = diag(
Pn

j=1Wi,j)L =D −W



166Algorithm 2 (Spectral Clustering)Algorithm 2 (Spectral Clustering)
1. Embed              into            - dimensional 

space by Laplacian eigenmap embedding.
2. Cluster the embedded samples by (non-

kernelized) k-means clustering algorithm.

Kernel k-means had a drawback that the 
clustering results crucially depend on 
initial cluster assignments. 
Since Laplacian eigenmap has a soft 
clustering property, the above algorithm is 
less dependent on initialization.

{xi}ni=1 (k − 1)



167ExamplesExamples
Original samples Clustered samples

Laplacian
eigenmap Ordinary

k-means



168Examples (cont.)Examples (cont.)
Original samples Clustered samples

Laplacian
eigenmap Ordinary

k-means



169Summary of Clustering MethodsSummary of Clustering Methods
Three different clustering families 
result in the same criterion!!

Weighted kernel k-means

“Hard” Laplacian eigenmap

Normalized cut



170HomeworkHomework
1. Implement Algorithm 2 (spectral clustering) 

and reproduce the 2-dimensional examples 
shown in the class.

Test the algorithm with your own (artificial or 
real) data and analyze their characteristics.

http://sugiyama-www.cs.titech.ac.jp/~sugi/data/DataAnalysis

Data Set 8 Data Set 9



171Homework (cont.)Homework (cont.)
2. Prove that weighted kernel k-means 

criterion with

Weight:

Kernel:
shares the same optimal solution as 
the normalized cut criterion:

d(x) =

nX
i=1

W (x,xi)

argmin
{Ci}ki=1

[JNcut] = argmin
{Ci}ki=1

[JWS ]

K(xi,xj) =W (xi,xj)/(d(xi)d(xj))



172Homework (cont.)Homework (cont.)
2. Hint:

Express all elements in         in terms of 
the affinity                , e.g.,

JWS =
kX
i=1

X
x∈Ci

d(x)kφ(x)− μik2
μi =

1

si

X
x0∈Ci

d(x0)φ(x0)

si =
X
x∈Ci

d(x)

JNcut =

kX
i=1

" P
x∈Ci

P
x0 6∈CiW (x,x

0)P
x00∈Ci

Pn
j=1W (x

00, xj)

#

JWS

W (x,x0)

si =
X
x00∈Ci

nX
j=1

W (x00, xj)



173Homework (cont.)Homework (cont.)

3. Prove that an optimizer of           is given by

subject to ADA> = Ik

JNcut

argmin
A∈Bk×n

h
tr(ALA>)

i

: Set of all           matrices such that
one of the elements in each column
takes one and others are all zero

Ai,j =

½
1 if xj ∈ Ci
0 o.w.

Bk×n k × n

D = diag(
Pn

j=1W i,j)

L =D −W



174Homework (cont.)Homework (cont.)

3. Hint:
Let                             and express all elements 
in            in terms of            , e.g.,

A = (a1|a2| · · · |ak)>
JNcut

JNcut =

kX
i=1

" P
x∈Ci

P
x0 6∈CiW (x,x

0)P
x00∈Ci

Pn
j=1W (x

00, xj)

#

{ai}ki=1
X
x00∈Ci

nX
j=1

W (x00,xj) = hWai,1ni = hDai,aii



ScheduleSchedule

June 11th: Projection Pursuit (1)
June 18th: Preparation for Mini-Conference
June 25th: Projection Pursuit (2)

Application Deadline to Mini-Conference
July 2nd: Independent Component Analysis
July 9th: Preparation for Mini-Conference
July 16th: Mini-Conference Day 1
July 23rd: Mini-Conference Day 2
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