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113Kernel TrickKernel Trick
For feature transformation                    , there 
exists a bivariate function               such that

if       is symmetric and positive semi-definite:

Such               is called the reproducing kernel.
Rather than directly specifying          , we  
implicitly specify         by a reproducing kernel.

K(x,x0)

K

K> =K ∀y, hKy,yi ≥ 0
K(x,x0)

Ki,j = hf i,f ji = hφ(xi),φ(xj)i = K(xi,xj)

φ(x) (= f)

φ(x)
φ(x)



114Combination of
Reproducing Kernels

Combination of
Reproducing Kernels

For any reproducing kernels (RKs)

Positive scaling of RK is still RK 

Sum of RKs is still RK:

Product of RKs is still RK:

α > 0

K(x,x0) = K(1)(x,x0) +K(2)(x,x0)

K(x,x0) = K(1)(x,x0)K(2)(x,x0)

K(x,x0) = αK(1)(x,x0)

K(1)(x,x0) = hφ(1)(x),φ(1)(x0)i
K(2)(x,x0) = hφ(2)(x),φ(2)(x0)i



115ProofProof
We prove that there exists a feature map             
such that                               .

For                          ,

For                          , 

For                                          ,

φ(x) =

Ã
φ(1)(x)

φ(2)(x)

!

+K(2)(x,x0)= K(1)(x,x0)

φ(x) =
√
αφ(1)(x)

[φ(x)]i,j = [φ
(1)(x)]i[φ

(2)(x)]j

= hφ(1)(x),φ(1)(x0)ihφ(2)(x),φ(2)(x0)i
= K(1)(x,x0) K(2)(x,x0)

φ(x)

hφ(x),φ(x0)i = K(x,x0)

hφ(x),φ(x0)i = αhφ(1)(x),φ(1)(x0)i = αK(1)(x,x0)

hφ(x),φ(x0)i = hφ(1)(x),φ(1)(x0)i+ hφ(2)(x),φ(2)(x0)i

hφ(x),φ(x0)i =
X
i,j

[φ(1)(x)]i[φ
(2)(x)]j [φ

(1)(x0)]i[φ(2)(x0)]j



116Exercise: Playing with Kernel TrickExercise: Playing with Kernel Trick
Norm:

Distance:

Angle:

cos θ =
K(x,x0)p

K(x,x)K(x0,x0)

f

f 0

θ

kf − f 0k2 = K(x,x)− 2K(x,x0) +K(x0,x0)

hf , f 0i = kfkkf 0k cos θ

kfk =
p
K(x,x)



117Playing with Kernel Trick (cont.)Playing with Kernel Trick (cont.)

For Gaussian kernels,

kf − f 0k2 = 2− 2K(x,x0)

cos θ = K(x,x0)

kfk2 = 1

c > 0

K(x,x0) = exp
¡
−kx− x0k2/c2

¢

f

f 0

θ



118Kernel Trick RevisitedKernel Trick Revisited

An inner product in the feature space can be 
efficiently computed by the kernel function.
If a linear algorithm is expressed only in 
terms of the inner product, it can be non-
linearlized by the kernel trick:

PCA, LPP, FDA, LFDA
K-means clustering
Perceptron (support vector machine)

hf ,f 0i = K(x,x0)



119Kernel LPPKernel LPP
Kernel LPP embedding of sample                   :

:Sorted generalized eigenvalues and 
normalized eigenvectors of

Note: When             is not full-rank, it may be 
replaced with                      .

f (= φ(x))

{λi,αi}mi=1

g = A>k
k = (K(x,x1),K(x,x2), . . . ,K(x,xn))

>

KLKα = λKDKα

hKDKαi,αji = δi,jλ1 ≥ λ2 ≥ · · · ≥ λn

L =D −W D = diag(
Pn

j=1W i,j)

KDK
KDK + εIn :small positive scalarε

A = (αn−m+1|αn−m+2| · · · |αn)

Ki,j = K(xi,xj)



120Kernel LPP Embedding
of Given Features

Kernel LPP Embedding
of Given Features

Kernel LPP embedding of              : 

can be directly obtained as

:Sorted eigenvalues and 
normalized eigenvectors of

Note: When similarity matrix      is sparse,      
and      are also sparse. Sparse 

eigenproblems can be solved efficiently.

{f i}ni=1

L
W

D

G

G = A>K G = (g1|g2| · · · |gn)

γ1 ≥ γ2 ≥ · · · ≥ γn

Ψ = (ψn−m+1|ψn−m+2| · · · |ψn)G = Ψ>

Lψ = γDψ

hDψi,ψji = δi,j

{γi,ψi}ni=1



121Laplacian EigenmapLaplacian Eigenmap

Definition of     implies             .

In practice, we remove       and use

This non-linear embedding method is called 
Laplacian eigenmap.

L L1 = 0

L =D −W
D = diag(

Pn
j=1W i,j)Lψ = γDψ

γn = 0, ψn ∝ 1
ψn

G = (ψn−m|ψn−m+1| · · · |ψn−1)>



122ExampleExample

Laplacian eigenmap can successfully 
unfold the non-linear manifold.

Original data (3D) Embedded Data (2D)

Note: Similarity matrix is defined by the nearest-
neighbor-based method with 10 nearest neighbors.



123HomeworkHomework
1. Implement Laplacian eigenmap and 

unfold the 3-dimensional S-curve data.

Test Laplacian eigenmap with your own 
(artificial or real) data and analyze its 
characteristics. 

http://sugiyama-www.cs.titech.ac.jp/~sugi/data/DataAnalysis



124Homework (cont.)Homework (cont.)
2. Prove that the dual eigenvalue problem of 

Fisher discriminant analysis is given by

Note: When solving the above eigenproblem, 
we may practically need to regularize it as

LFDA can also be kernelized similarly!

D(b) = diag(
Pn

j=1W
(b)
i,j )

W
(b)
i,j =

(
1/n− 1/n` (yi = yj = `)

1/n (yi 6= yj) W
(w)
i,j =

(
1/n` (yi = yj = `)

0 (yi 6= yj)

D(w) = diag(
Pn

j=1W
(w)
i,j )

KL(b)Kα = λKL(w)Kα
L(b) =D(b) −W (b) L(w) = D(w) −W (w)

KL(b)Kα = λ(KL(w)K + ²In)α



125Notification of
Final Assignment

Notification of
Final Assignment

Data Analysis: Apply dimensionality 
reduction or clustering techniques to 
your own data set and “mine” something 
interesting!

Deadline: July 31st (Wed) 17:00
Bring your printed report to W8E-406.
E-mail submission is also possible    
(though not recommended).



126Mini-Conference
on Data Analysis
Mini-Conference
on Data Analysis

On July 16th and 23rd, we have a mini-
conference on data analysis.
Some of the students may present their 
data analysis results.
Those who give a talk at the conference 
will have very good grades!



127Mini-Conference 
on Data Analysis
Mini-Conference 
on Data Analysis

Application procedure: On June 25th,     
just say to me “I want to give a talk!”.
Presentation: approx. 10 min (?)

Description of your data
Methods to be used
Outcome

Slides should be in English.
Better to speak in English, but Japanese 
may also be allowed (perhaps your friends 
will provide simultaneous translation!). 


