Advanced Data Analysis: Fisher Discriminant Analysis

Masashi Sugiyama (Computer Science)

W8E-406, sugi@cs.titech.ac.jp
http://sugiyama-www.cs.titech.ac.jp/~sugi

Supervised Dimensionality ${ }^{57}$ Reduction

\square Samples $\left\{\boldsymbol{x}_{i}\right\}_{i=1}^{n}$ have class labels $\left\{y_{i}\right\}_{i=1}^{n}$:

$$
\begin{array}{ll}
\left\{\left(\boldsymbol{x}_{i}, y_{i}\right)\right\}_{i=1}^{n} & \boldsymbol{x}_{i} \in \mathbb{R}^{d} \\
y_{i} \in\{1,2, \ldots, c\}
\end{array}
$$

\square We want to obtain an embedding such that samples in different classes are well separated from each other!

Within-Class Scatter Matrix 58

- Sum of scatter within each class:

$$
\boldsymbol{S}^{(w)}=\sum_{y=1}^{c} \sum_{i: y_{i}=y}\left(\boldsymbol{x}_{i}-\boldsymbol{\mu}_{y}\right)\left(\boldsymbol{x}_{i}-\boldsymbol{\mu}_{y}\right)^{\top}
$$

$\boldsymbol{\mu}_{y}$:mean of samples in class y
n_{y} :\# of samples in class y

Between-Class Scatter Matrix ${ }^{59}$

\square Sum of scatter between classes:

$$
\boldsymbol{S}^{(b)}=\sum_{y=1}^{c} n_{y}\left(\boldsymbol{\mu}_{y}-\boldsymbol{\mu}\right)\left(\boldsymbol{\mu}_{y}-\boldsymbol{\mu}\right)^{\top}
$$

$$
\begin{aligned}
\boldsymbol{\mu} & =\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{x}_{i} \\
\boldsymbol{\mu}_{y} & =\frac{1}{n_{y}} \sum_{i: y_{i}=y} \boldsymbol{x}_{i}
\end{aligned}
$$

$\boldsymbol{\mu}$:mean of all samples
$\boldsymbol{\mu}_{y}$:mean of samples in class y
n_{y} :\# of samples in class y

Fisher Discriminant Analysis (FDÅ)
 Fisher (1936)

- Idea: minimize within-class scatter and maximize between-class scatter by maximizing

$$
\operatorname{tr}\left(\left(\boldsymbol{B} \boldsymbol{S}^{(w)} \boldsymbol{B}^{\top}\right)^{-1} \boldsymbol{B} \boldsymbol{S}^{(b)} \boldsymbol{B}^{\top}\right)
$$

-To disable arbitrary scaling, we impose

$$
\boldsymbol{B} \boldsymbol{S}^{(w)} \boldsymbol{B}^{\top}=\boldsymbol{I}_{m}
$$

- FDA criterion:

$$
\begin{aligned}
\boldsymbol{B}_{F D A}= & \underset{\boldsymbol{B} \in \mathbb{R}^{m \times d}}{\operatorname{argmax}} \operatorname{tr}\left(\boldsymbol{B} \boldsymbol{S}^{(b)} \boldsymbol{B}^{\top}\right) \\
& \text { subject to } \boldsymbol{B} \boldsymbol{S}^{(w)} \boldsymbol{B}^{\top}=\boldsymbol{I}_{m}
\end{aligned}
$$

FDA: Summary

\square FDA criterion: $\boldsymbol{B}_{F D A}=\operatorname{argmax} \operatorname{tr}\left(\boldsymbol{B} \boldsymbol{S}^{(b)} \boldsymbol{B}^{\top}\right)$ $B \in \mathbb{R}^{m \times d}$

$$
\text { subject to } \boldsymbol{B} \boldsymbol{S}^{(w)} \boldsymbol{B}^{\top}=\boldsymbol{I}_{m}
$$

FDA solution:

$$
\boldsymbol{B}_{F D A}=\left(\boldsymbol{\psi}_{1}\left|\boldsymbol{\psi}_{2}\right| \cdots \mid \boldsymbol{\psi}_{m}\right)^{\top}
$$

- $\left\{\lambda_{i}, \boldsymbol{\psi}_{i}\right\}_{i=1}^{m}$:Sorted generalized eigenvalues and normalized eigenvectors of $\boldsymbol{S}^{(b)} \boldsymbol{\psi}=\lambda \boldsymbol{S}^{(w)} \boldsymbol{\psi}$

$$
\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{d} \quad\left\langle\boldsymbol{S}^{(w)} \boldsymbol{\psi}_{i}, \boldsymbol{\psi}_{j}\right\rangle=\delta_{i, j}
$$

\square FDA embedding of a sample \boldsymbol{x} :

$$
\boldsymbol{z}=\boldsymbol{B}_{F D A} \boldsymbol{x}
$$

Examples of FDA

$$
d=2, m=1 \quad\left(\mathbb{R}^{2} \Longrightarrow \mathbb{R}^{1}\right)
$$

\square FDA can find an appropriate subspace.

Examples of FDA (cont.)

$$
\begin{aligned}
& d=2, m=1 \quad\left(\mathbb{R}^{2} \Longrightarrow \mathbb{R}^{1}\right)
\end{aligned}
$$

- However, FDA does not work well if samples in a class have multimodality.

Dimensionality of Embedding Spate

\square We have $\operatorname{rank}\left(\boldsymbol{S}^{(b)}\right) \leq c-1$. (Homework)
\square This means $\left\{\lambda_{i}\right\}_{i=c}^{d}$ are always zero.
c :\# of classes

$$
\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{d}
$$

- Due to the multiplicity of eigenvalues, eigenvectors $\left\{\boldsymbol{\psi}_{i}\right\}_{i=c}^{d}$ can be arbitrarily rotated in the null space of $\boldsymbol{S}^{(b)}$.
- Thus FDA essentially requires

$$
m \leq c-1
$$

- When $c=2, m$ can not be larger than 1 !
m :dimensionality of embedding space

$$
\begin{aligned}
& \text { Pairwise Expressions of Scatter }{ }^{65} \\
& \boldsymbol{S}^{(w)}=\frac{1}{2} \sum_{i, j=1}^{n} \boldsymbol{Q}_{i, j}^{(w)}\left(\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right)\left(\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right)^{\top} \quad \text { (Homework) } \\
& \qquad \boldsymbol{Q}_{i, j}^{(w)}=\left\{\begin{array}{cl}
1 / n_{y} & \left(y_{i}=y_{j}=y\right) \\
0 & \left(y_{i} \neq y_{j}\right)
\end{array}\right. \\
& \qquad \boldsymbol{S}^{(b)}=\frac{1}{2} \sum_{i, j=1}^{n} \boldsymbol{Q}_{i, j}^{(b)}\left(\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right)\left(\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right)^{\top} \\
& \boldsymbol{Q}_{i, j}^{(b)}=\left\{\begin{array}{cl}
1 / n-1 / n_{y} & \left(y_{i}=y_{j}=y\right) \\
1 / n & \left(y_{i} \neq y_{j}\right)
\end{array}\right. \\
& n: \# \text { of all samples } \\
& n_{y}: \text { \# of samples in class } y \\
& \text { Implication: } \\
& \text { - Samples in the same class are made close } \\
& \text { - Samples in different classes are made apart }
\end{aligned}
$$

Local Fisher Discriminant Analysifs
 Sugiyama (2007)

- Idea: Take the locality of data into account:
- Nearby samples in the same class are made close
- Far-apart samples in the same class are not made close
- Samples in different classes are made apart

LFDA Criterion

- Local within-class scatter matrix:

$$
\begin{array}{r}
\widetilde{\boldsymbol{S}}^{(w)}=\frac{1}{2} \sum_{i, j=1}^{n} \widetilde{\boldsymbol{Q}}_{i, j}^{(w)}\left(\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right)\left(\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right)^{\top} \quad \boldsymbol{W}_{i} \\
\widetilde{\boldsymbol{Q}}_{i, j}^{(w)}=\left\{\begin{array}{cl}
\boldsymbol{W}_{i, j} / n_{y} & \left(y_{i}=y_{j}=y\right) \\
0 & \left(y_{i} \neq y_{j}\right)
\end{array}\right.
\end{array}
$$

\square Local between-class scatter matrix:

$$
\begin{aligned}
\widetilde{\boldsymbol{S}}^{(b)}=\frac{1}{2} \sum_{i, j=1}^{n} \widetilde{\boldsymbol{Q}}_{i, j}^{(b)}\left(\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right)\left(\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right)^{\top} \\
\widetilde{\boldsymbol{Q}}_{i, j}^{(b)}=\left\{\begin{array}{cl}
\boldsymbol{W}_{i, j}\left(1 / n-1 / n_{y}\right) & \left(y_{i}=y_{j}=y\right) \\
1 / n & \left(y_{i} \neq y_{j}\right)
\end{array}\right.
\end{aligned}
$$

\square LFDA criterion: $\boldsymbol{B}_{L F D A}=\operatorname{argmax} \operatorname{tr}\left(\boldsymbol{B} \widetilde{\boldsymbol{S}}^{(b)} \boldsymbol{B}^{\top}\right)$ $B \in \mathbb{R}^{m \times d}$
subject to $\boldsymbol{B} \widetilde{\boldsymbol{S}}^{(w)} \boldsymbol{B}^{\top}=\boldsymbol{I}_{m}$

LFDA: Summary

- LFDA criterion: $\boldsymbol{B}_{L F D A}=\operatorname{argmax} \operatorname{tr}\left(\boldsymbol{B} \widetilde{\boldsymbol{S}}^{(b)} \boldsymbol{B}^{\top}\right)$ $\boldsymbol{B} \in \mathbb{R}^{m \times d}$

■ LFDA solution:

$$
\text { subject to } \boldsymbol{B} \widetilde{\boldsymbol{S}}^{(w)} \boldsymbol{B}^{\top}=\boldsymbol{I}_{m}
$$

$$
\boldsymbol{B}_{L F D A}=\left(\boldsymbol{\psi}_{1}\left|\boldsymbol{\psi}_{2}\right| \cdots \mid \boldsymbol{\psi}_{m}\right)^{\top}
$$

- $\left\{\lambda_{i}, \boldsymbol{\psi}_{i}\right\}_{i=1}^{m}$:Sorted generalized eigenvalues and normalized eigenvectors of $\widetilde{\boldsymbol{S}}^{(b)} \boldsymbol{\psi}=\lambda \widetilde{\boldsymbol{S}}^{(w)} \boldsymbol{\psi}$

$$
\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{d} \quad\left\langle\widetilde{\boldsymbol{S}}^{(w)} \boldsymbol{\psi}_{i}, \boldsymbol{\psi}_{j}\right\rangle=\delta_{i, j}
$$

\square LFDA embedding of a sample \boldsymbol{x} :

$$
\boldsymbol{z}=\boldsymbol{B}_{L F D A} \boldsymbol{x}
$$

Examples of LFDA

$$
d=2, m_{10}=1 \quad\left(\mathbb{R}^{2} \Longrightarrow \mathbb{R}^{1}\right)_{0}
$$

Note: Similarity matrix is defined by the nearest-neighbor-based method with 50 nearest neighbors.
\square LFDA works well even for samples with within-class multimodality.
\square Since $\operatorname{rank}\left(\widetilde{\boldsymbol{S}}^{(b)}\right) \gg c, m$ can be large in LFDA.
C :\# of classes
m :dimensionality of embedding space

Example of FDA/LFDA

\square Thyroid disease data (5-dimensional)

- T3-resin uptake test.
- Total Serum thyroxin as measured by the isotopic displacement method. etc
- Label: Healty or sick
- Sick can caused by
- Hyper-functioning of thyroid
- Hypo-functioning of thyroid

Projected Samples onto 1-D Spaçe FDA

Sick and healthy are nicely split.

- But hyper- and hypofunctioning are mixed.
\square Sick and healthy are nicely split.
- Hyper- and hypo-functioning are also nicely separated.

Homework

1. Implement FDA/LFDA and reproduce the 2dimensional examples shown in the class.
http://sugiyama-www.cs.titech.ac.jp/~sugi/data/DataAnalysis

Test FDA/LFDA with your own (artificial or real) data and analyze the characteristics of FDA/LFDA.

Homework (cont.)

73
2. Prove that $\operatorname{rank}\left(\boldsymbol{S}^{(b)}\right) \leq c-1$.
C : \# of classes Hint: Range of $\boldsymbol{S}^{(b)}$ is spanned by $\left\{\boldsymbol{\mu}_{y}-\boldsymbol{\mu}\right\}_{y=1}^{c}$.
-Two-class case

-Three-class case

Homework (cont.)

3. Prove that

$$
\begin{aligned}
& \text { A) } \boldsymbol{S}^{(w)}=\frac{1}{2} \sum_{i, j=1}^{n} \boldsymbol{Q}_{i, j}^{(w)}\left(\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right)\left(\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right)^{\top} \\
& \text { B) } \boldsymbol{S}^{(b)}=\frac{1}{2} \sum_{i, j=1}^{n} \boldsymbol{Q}_{i, j}^{(b)}\left(\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right)\left(\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right)^{\top}
\end{aligned}
$$

$$
\boldsymbol{Q}_{i, j}^{(w)}=\left\{\begin{array}{cl}
1 / n_{y} & \left(y_{i}=y_{j}=y\right) \\
0 & \left(y_{i} \neq y_{j}\right)
\end{array} \boldsymbol{Q}_{i, j}^{(b)}=\left\{\begin{array}{cl}
1 / n-1 / n_{y} & \left(y_{i}=y_{j}=y\right) \\
1 / n & \left(y_{i} \neq y_{j}\right)
\end{array}\right.\right.
$$

n_{y} :\# of samples in class $y \quad n$:\# of all samples
Hint: The use of the following mixture scatter matrix may make your life easy...

$$
\boldsymbol{S}^{(m)}=\boldsymbol{S}^{(w)}+\boldsymbol{S}^{(b)} \quad\left(=\sum_{i=1}^{n}\left(\boldsymbol{x}_{i}-\boldsymbol{\mu}\right)\left(\boldsymbol{x}_{i}-\boldsymbol{\mu}\right)^{\top}\right)
$$

Suggestion

Read the following article for the next class:

- B. Schölkopf, A. Smola and K.-R. Müller: Nonlinear Component Analysis as a Kernel Eigenvalue Problem, Neural Computation, 10(5), 1299-1319, 1998.
http://neco.mitpress.org/cgi/reprint/10/5/1299.pdf

