3 Convergence of Sequences of Measurable Functions

Consider other types of convergence than $f_n \to f$ a.e.- μ .

Def. 3.1
f₁, f₂,..., f: Ω → ℝ, F/B(ℝ)-measurable
i) If f₁, f₂,..., f ∈ L^p(Ω, F, μ), f_n converges to f in L^p or f_n ^{L^p}→ f ⇔ ||f_n - f||_p → 0 ⇔ ∫ |f_n - f|^p dμ → 0 as n → ∞
ii) f_n converges to f in measure μ or f_n ^μ→ f ⇔ [∀]ε > 0, μ{ω ∈ Ω : |f_n(ω) - f(ω)| ≥ ε} → 0 as n → ∞ When μ = P (probability measure), convergence in probability f_n ^P→ f

iii) f_n converges to f almost uniformly in μ or $f_n \to f$ a.u.- μ $\Leftrightarrow {}^{\forall} \epsilon, {}^{\exists} A \in \mathcal{F} \text{ s.t. } \mu(A^c) < \epsilon \text{ and } f_n \to f \text{ uniformly on } A$

We compare these types of convergence.

Thm. 3.1 $f_1, f_2, \dots, f \in L^p \ (p > 0), \quad f_n \xrightarrow{L^p} f \Rightarrow f_n \xrightarrow{\mu} f$

 $\frown \text{ Thm. 3.2}$ $f_n \to f \text{ a.u.-}\mu \Rightarrow f_n \to f \text{ a.e.-}\mu \& f_n \xrightarrow{\mu} f$

- Thm. 3.3 (Egorov's Thm.) If μ is finite, $f_n \to f$ a.e.- $\mu \Leftrightarrow f_n \to f$ a.u.- μ

Remark 3.1 If μ is finite, $f_n \to f$ a.e.- $\mu \Rightarrow f_n \xrightarrow{\mu} f$