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Outline of the Lecture

This course introduces several basic concepts of mathematical optimization, prob-

ability and statistics, and is intended to provided key knowledge necessary for

advanced study in Mathematical and Computing Sciences.
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1 Probability Space Revisited

Def. 1.1� �
Probability Space (Ω,F ,P)

Ω: Sample space

Set of all possible outcomes (of a probabilistic phenomenon)

F : σ-Field (or σ-algebra) on Ω

Set of subsets of Ω on which probability is defined (detailed later)

(Ω,F): Measurable space

Event: An element of F

P: Probability measure on (Ω,F)

Set function from F to [0, 1] (detailed later)

P(A), A ∈ F : Probability of event A� �
Questions:

• Why is probability P set function?

(Can not we assign the probability to each element of Ω?)

• What is σ-field? Why is it necessary?

1.1 Discrete Probability Space

When Ω is a countable set; Ω = {ω1, ω2, . . .}, we can assign the value of probability

to each element of Ω
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Def. 1.2 (Discrete Probability Space)� �
Probability (mass) function p: Ω → [0, 1] s.t.

∑
ωi∈Ω

p(ωi) = 1

F = 2Ω: Set of all subsets of Ω

P(A) =
∑
ωi∈A

p(ωi), A ∈ F

� �
1.2 σ-Fields

If we want to assign the value of probability to elements of uncountable sample

space, e.g., Ω = [0, 1], we can only assign positive values to at most countable

number of elements.

⇒ Probability is defined by assigning values to subsets of Ω.

Question: On which set of subsets F , is probability P well defined?

(Domain of set function?)

Requirements:

• Ω ∈ F (Probability is assigned to Ω itself)

• F is closed w.r.t. set operations (c, ∪, ∩)
A, B ∈ F ⇒ Ac ∈ F , A ∪B ∈ F , A ∩B ∈ F

σ-Fields satisfy these requirements.

Def. 1.3 (σ-Field or σ-Algebra)� �
Set of subsets F of Ω is a σ-field (or σ-algebra) on Ω ⇔

1. ∃A ⊂ Ω s.t. A ∈ F

2. A ∈ F ⇒ Ac ∈ F

3. A1, A2, . . . ∈ F ⇒
∪∞

i=1Ai ∈ F

(Ω, F): Measurable space� �
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Properties of σ-fields I

i) Ω ∈ F , ∅ ∈ F

ii) A, B ∈ F ⇒ A ∪B, A ∩B, A \B (= A ∩Bc) ∈ F

iii) A1, A2, . . . ∈ F ⇒
∞∩
i=1

Ai ∈ F

A σ-field is closed w.r.t. countably infinite set operations.

Question

Why should the domain of P be closed w.r.t. countably infinite set operations?

Properties of σ-fields II

iv) σ-fields are not unique for a sample space Ω

v) For σ-fields F1, F2, F1 ∪ F2 may not be a σ-field

A, B ⊂ Ω (A 6= B), A ∪B 6∈ FA ∪ FB

Lem. 1.1 (Uncountable intersection of σ-fields)� �
X : An uncountable set

Fx, x ∈ X : A collection of σ-fields

⇒
∩

x∈X Fx is a σ-field� �
Lem. 1.2 (σ-Field generated by a given set of subsets)� �
A: Set of subsets of Ω

⇒ The smallest σ-field containing A (intersection of all σ-fields containing A),

denoted by σ(A), can be constructed.� �
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1.3 Borel Fields

σ-Fields are not unique for a given Ω ⇒ Which σ-field should be chosen?

• Ω is countable ⇒ F = 2Ω (set of all subsets of Ω) is sufficient.

• Ω is uncountable ⇒ F = 2Ω is not good! (2Ω includes unmeasurable sets)

Def. 1.4 (Borel fields)� �
(E, d): Metric space

E: Set of all open subsets in E

Borel field B(E) on E: σ-field σ(E) generated by E
(smallest σ-field containing E)� �

(Borel field can be defined on a topological space)

Borel field on R
B(R): σ-field generated by the set of all open intervals in R

Borel field on a function space

D(R): Set of right-continuous functions with left limits on R

Borel field B(D(R)) is generated by the sets{
f ∈ D(R) | f(x1) ∈ (a1, b1), f(x2) ∈ (a2, b2), . . . , f(xn) ∈ (an, bn)

}
,

n ∈ Z, xi ∈ R,−∞ < ai < bi < +∞, i = 1, 2, . . . , n.
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1.4 Measure and Probability

Def. 1.5 (Measure)� �
µ: F → R is a measure on (Ω,F) ⇔

1. ∀A ∈ F , µ(A) ≥ 0

2. ∃A ∈ F s.t. µ(A) < ∞

3. A1, A2, . . . ∈ F s.t. Ai ∩ Aj = ∅ (i 6= j) (mutually disjoint)

⇒ µ
( ∞∪
i=1

Ai

)
=

∞∑
i=1

µ(Ai)

(Ω,F , µ): Measure space� �
Remark 1.1 µ(∅) = 0

Lebesgue measure λ on (Rn,B(Rn))

1. A =
∏n

i=1(ai, bi), ai < bi (open interval) ⇒ λ(A) =
∏n

i=1(bi − ai)

2. A ∈ B(R) ⇒ λ(A) = inf
CA

∑
B∈CA

λ(B),

where CA = {Open intervals covering A}

Counting measure ν: Measure s.t. ν(A) ∈ Z+ = {0, 1, 2, . . . ,+∞}, A ∈ F
(Number of elements in A)

Probability measure P: Measure s.t. P(Ω) = 1

Properties of measure

i) A,B ∈ F s.t. A ⊂ B ⇒ µ(A) ≤ µ(B)

ii) A1, A2, . . . ∈ F (not necessarily disjoint) ⇒ µ
( ∞∪
i=1

Ai

)
≤

∞∑
i=1

µ(Ai)
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iii) A1, A2, . . . ∈ F s.t. A1 ⊂ A2 ⊂ · · · ⇒ µ
( ∞∪
i=1

Ai

)
= lim

i→∞
µ(Ai)

iv) A1, A2, . . . ∈ F s.t. A1 ⊃ A2 ⊃ · · · & ∃n ∈ N s.t. µ(An) < ∞

⇒ µ
( ∞∩
i=1

Ai

)
= lim

i→∞
µ(Ai)

Remark 1.2 In iv), “∃n ∈ N s.t. µ(An) < ∞” is necessary.
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