

minimize

n∑
i,j=1

Qijwij +

n∑
i=1

qixi

subject to wij ≥ 0 1 ≤ i, j ≤ n
1− xi − xj + wij ≥ 0 1 ≤ i, j ≤ n
xj − wij ≥ 0 1 ≤ i, j ≤ n.

(3)

Of course the optimal value of (3) is smaller than or equal to the one of (2).
We can apply the RLT for a more general quadratic constrained quadratic program.

minimize xTQ0x+ qT0 x
subject to xTQix+ qTi x+ γi ≤ 0 1 ≤ i ≤ r

aT
j x+ bj ≤ 0 1 ≤ j ≤ s.

(4)

Then we can take the products of the linear constraints and perform a similar linearization.

1 ≤ ∀j ≤ ∀k ≤ s

−(aT
j x+ bj)(a

T
k x+ bk)

= −xTaja
T
k x− bka

T
j x− bja

T
k x− bjbk ≤ 0.

At the end, we can obtain the following relaxation for (4):

minimize

n∑
p,ℓ=1

[Q0]pℓwpℓ + qT0 x

subject to
∑
p,ℓ=1

[Qi]pℓwpℓ + qTi x+ γi ≤ 0 1 ≤ i ≤ r

−
n∑

p,ℓ=1

[aja
T
k ]pℓwpℓ − bka

T
j x− bja

T
k x− bjbk ≤ 0 1 ≤ j, k ≤ s

aT
j x+ bj ≤ 0 1 ≤ j ≤ s.

(5)

In some cases, (5) can be unbounded even when (4) has a bounded optimal value. In this case,
it is necessary to add some redundant constraints for (4) in (5).

3.3 Exercises

1. Show that the constraints 0 ≤ xi ≤ 1 (i = 1, 2, . . . , n) are redundant for (3) and therefore,
unnecessary.

4 Semidefinite Program Relaxation

4.1 Semidefinite Program (SDP)

If we take K = Sn+ in (CLP), where Sn+ stands for the closed convex cone of real n × n symmetric
positive semidefinite matrices, we have a Semidefinite Program (SDP).

(SDP)


minimize ⟨C,X⟩
subject to ⟨Ai,X⟩ = bi (i = 1, 2, . . . ,m)

X ∈ Sn+,

and its associated dual problem:
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(DCLP)


maximize ⟨b,y⟩

subject to

m∑
i=1

Aiyi + S = C,

S ∈ Sn+.

4.2 Maximum Cut Problem

Given a graph G = (V,E) where V := {1, 2, . . . , n} is the set of vertices and E ⊆ V × V is the set
of edges, let us define positive weights for each existing edge (u, v) ∈ E as w : E → R++.

Figure 1: A undirected graph with positive weights.

Given a subset S ⊆ V , the subset of edges δ(S) := {(u, v) ∈ E | u ∈ S, v ∈ V \S} is called a cut
of the graph G = (V,E). We can associate a capacity for the cut by summing all the edges’ weights
of the cut.

The problem to find a minimum cut (capacity) among all possible ones of a undirected graph
with positive weights is an “easy” problem. This can be understood in the sense that we can use for
instance the famous Ford and Fulkerson method to find the maximum flow of the graph which also
gives the minimum cut of the graph from a specific source vertex to a sink vertex. The application
of this method for all pair of vertices for instance will give the desired result. Of course, there
are other complex algorithms which guarantee polynomial-time number of steps to determine the
minimum cut of a undirected graph.

Now, let us turn on to the problem of finding the maximum cut. It is known that this problem is
NP-complete, i.e., it is Non-deterministic Polynomial time (NP) and Non-deterministic Polynomial
time hard (NP-hard).

Suppose we have a cut S ⊆ V := {1, 2, . . . , n}, and we assign the value 1 for xi if i ∈ S and −1
for xi if i ∈ V \S. Also, let us assume that wij := 0 for (i, j) ̸∈ E. Then, the capacity of a cut S
will be

1

4

n∑
i,j=1

wij(1− xixj), xi =

{
1, i ∈ S

−1, i ∈ V \S
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Therefore, we can formulate the max-cut problem as an optimization problem. maximize
1

4

n∑
i,j=1

wij(1− xixj)

subject to x2i = 1 i = 1, 2, . . . , n.

(6)

For a maximization problem, we say that one algorithm gives an α-approximation if for an
α ∈ (0, 1), we have

[approximate value obtained by the algorithm] ≥ α[optimal value of the problem]

for all instance of the problem class.

4.2.1 A Very Simple Randomized Algorithm

Let us consider the most simple randomized algorithm for the max-cut problem.

Set maxcut:= −∞.
For k := 1 to MAX
Choose a cut Sk ⊆ V such that each vertex of V is chosen with probability 1

2 .
Compute δ(Sk).
If δ(Sk) > maxcut,
then maxcut:= δ(Sk).

Since each possible edge in G = (V,E) can be chosen with probability 0.5, we obtain:

E[rand] =
1

2

∑
1≤i≤j≤n

wij =
1

2

∑
(i,j)∈E

wij ≥
1

2
[opt. max-cut].

where “rand” is the optimal value obtained by the above algorithm and “opt. max-cut” is the actual
optimal value of the maximum capacity of the cut in the given graph.

4.3 Semidefinite Program Relaxation of the Max-Cut Problem

Associating a new variable Xij for xixj (1 ≤ i ≤ j ≤ n), we can rewrite (6) as the following
equivalent problem: 

maximize
1

4
⟨W ,E −X⟩

subject to Xii = 1 i = 1, 2, . . . , n,
X ∈ Sn

+,
rank(X) = 1,

where E is the matrix with all elements equal to one.
Neglecting the condition rank(X) = 1, we obtain the following semidefinite program relaxation

of the max-cut problem: 
maximize

1

4
⟨W ,E −X⟩

subject to Xii = 1 i = 1, 2, . . . , n,
X ∈ Sn

+.

(7)

It is clear that

[sdp max-cut] ≥ [opt. max-cut],
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