Lecture 2

2 Field Extension

2.1 Extension

- What is a field extension K/k ?
- Extension K/k is finite if K is of finite dimensional as a vector space over k.
- Example : \mathbb{C}/\mathbb{R} finite, \mathbb{R}/\mathbb{Q} not finite.
- Simple extension $k(\alpha)$: The smallest subfield of K containing k and $\alpha \in K$.
- Example : $\mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2}; a, b \in \mathbb{Q}\}.$

Proof. \supset is obvious. To see \subset , show that the right hand side is a field. \Box

- Multiple extension $k(\alpha_1, \alpha_2, \cdots, \alpha_n) : k(\alpha_1, \alpha_2, \cdots, \alpha_{n-1})(\alpha_n)$ inductively.
- Example : $\mathbb{Q}(\sqrt{2},\sqrt{3}) = \mathbb{Q}(\sqrt{2}+\sqrt{3}).$

Proof.
$$\supset$$
 is obvious. To see \subset , we let $\alpha = \sqrt{2} + \sqrt{3}$, then $\sqrt{2} = \frac{\alpha^2 - 1}{2\alpha}$ and $\sqrt{3} = \frac{\alpha^2 + 1}{2\alpha}$.

- Algebraic versus Transcendental : $\alpha \in K$ is algebraic over k if $1, \alpha, \alpha^2, \dots, \alpha^n$ are linearly dependent over k for some n, and transcendental otherwise.
- The set of algebraic numbers over \mathbb{Q} is countable (Homework 1). Thus there are uncountably many transcendental numbers over \mathbb{Q} in \mathbb{C} .

2.2 Algebraic Extension

- Another formulation of algebraicity : α is algebraic if the evaluation map φ_{α} : $k[X] \to K$ defined by $\varphi_{\alpha}(f) = f(\alpha)$ has nontrivial kernel.
- The kernel of φ_{α} is generated by a single polynomial p(X) since k[X] is a principal ideal domain.
- The homomorphism theorem implies

$$k[X]/(p(X)) \simeq k[\alpha],$$

and since $k[\alpha]$ is an integral domain, p(X) is irreducible over k.

- The irreducible polynomial (minimal polynomial) $\operatorname{Irr}_k(\alpha)$ of $\alpha \in K$: a monic (the leading coefficient is 1) polynomial generating $\operatorname{Ker} \varphi_{\alpha}$.
- Example : If $k = \mathbb{Q}$, $\alpha = \sqrt[n]{2}$, then $\operatorname{Irr}_k(\alpha) = X^n 2$.

Proof. Use Eisenstein's Criterion (see Homework 6) !

- Example : If $k = \mathbb{Q}(\sqrt{2}), \alpha = \sqrt[4]{2}$, then $\operatorname{Irr}_k(\alpha) = X^2 \sqrt{2}$.
- Algebraic extension K/k: If any element $\alpha \in K$ is algebraic over k.
- Proposition 2.2.1 : If K/k is a finite extension, then K is algebraic over k.

Proof. If the dimension of K as a k vector space is n, then $1, \alpha, \alpha^2, \dots, \alpha^n$ cannot be linearly independent for any nonzero $\alpha \in K$.

- Remark : The converse is not true. For example, the set of all algebraic numbers over \mathbb{Q} turns out to be a field (Homework 7) and an infinite algebraic extension over \mathbb{Q} .
- Degree of extension [K:k]: Dimension of K as a k vector space. It is either a positive integer or ∞ .
- Proposition 2.2.2: Let K/k and L/K be field extensions. Then, L is an extension of k and

$$[L:k] = [L:K][K:k].$$

Proof. The first statement is routine to check. To see the identity, choose a basis $\{x_i \in L; i \in I\}$ of L over K and a basis $\{y_j \in K; j \in J\}$ of K over k, and show that $\{x_iy_j; i \in I, j \in J\}$ forms a basis of L over k.

- Corollary 2.2.3 : L/k is finite if and only if both L/K and K/k are finite.
- **Proposition 2.2.4**: Let $\alpha \in K$ be algebraic over k. Then $k[\alpha] = k(\alpha)$, and $k(\alpha)$ is finite over k. The degree $[k(\alpha), k]$ is equal to the degree of $\operatorname{Irr}_k(\alpha)$.

Proof. Let p(X) denote $\operatorname{Irr}_k(\alpha)$ and $f(X) \in k[X]$ such that $f(\alpha) \neq 0$. Then since (p, f) = 1, there exist $g, h \in k[X]$ such that

$$g \cdot p + h \cdot f = 1.$$

This implies that f is invertible in $k[\alpha]$, and hence $k[\alpha] = k(\alpha)$.

The rest is to show that $\{1, \alpha, \dots, \alpha^{\deg p-1}\}$ forms a basis of $k(\alpha)$.

Suppose that $1, \alpha, \dots, \alpha^{\deg p-1}$ are not linearly independent, then there is a polynomial g of degree $\leq \deg p-1$ such that $g(\alpha) = 0$. This contradicts to the irreducibility of p(X).

Choose $f(\alpha) \in k(\alpha)$ where $f \in k[X]$. Then there are unique polynomials $q, r \in k[X]$ with deg $r(X) < \deg p(X)$ such that

$$f(X) = q(X)p(X) + r(X),$$

 \square

and $f(\alpha) = r(\alpha)$. Thus $1, \alpha, \dots, \alpha^{\deg p-1}$ generate $k(\alpha)$.

2.3 Algebraic Closure

- Algebraically closed field K: If every polynomial in K[X] of degree ≥ 1 has a root in K.
- **Example :** By the fundamental theorem of algebra, \mathbb{C} is algebraically closed.
- Theorem 2.3.1 : Let k be a field. Then there exits an algebraic extension K^{alg} which is algebraically closed (called algebraic closure of k). K^{alg} is unique up to isomorphism inducing the identity on k.

Proof. See some textbook, for example, S. Lang; Algebra, GTM Springer, 2002. \Box

- **Example :** The algebraic closure of \mathbb{R} is \mathbb{C} .
- **Example :** The algebraic closure of \mathbb{Q} is the field of algebraic numbers.

2.4 Homework

- 1. Show that the set of algebraic numbers over \mathbb{Q} is countable.
- 2. Show that π and e are transcendental over \mathbb{Q} .
- 3. Let α be a root of the equation

$$X^3 + X^2 + X + 2 = 0.$$

Express $(\alpha^2 + \alpha + 1)(\alpha^2 + \alpha)$ and $(\alpha - 1)^{-1}$ in $\mathbb{Q}(\alpha)$ in the form

$$a\alpha^2 + b\alpha + c$$

with $a, b, c \in \mathbb{Q}$.

- 4. Suppose α is algebraic over k of odd degree. Show that $K(\alpha) = k(\alpha^2)$.
- 5. Show that $\sqrt{2} + \sqrt{3}$ is algebraic of degree 4 over \mathbb{Q} .
- 6. Prove **Eisenstein's criterion :** Let $f(X) = a_n X^n + a_{n-1} X^{n-1} + \cdots + a_1 X + a_0$ be a polynomial of integer coefficients. If there exists a prime p such that
 - (1) p divides each a_j for $j \neq n$,

- (2) p does not divide a_n , and
- (3) p^2 does not divide a_0 ,

then f(X) is irreducible over \mathbb{Q} .

7. Show that the set of algebraic numbers over \mathbb{Q} forms a field.