
= ϕ(xQ)−
1

2γ
∥gQ∥22 + ⟨gQ,x− xQ⟩

= ϕ(xQ)−
1

2γ
∥gQ∥22 + ⟨gQ, x̄− xQ⟩+ ⟨gQ,x− x̄⟩

= ϕ(xQ) +
1

2γ
∥gQ∥22 + ⟨gQ,x− x̄⟩.

Since γ ≥ L, we have ϕ(xQ) ≥ f(xQ), and the result follows.

We are ready to define our estimated sequence. Assume that f ∈ S1,1
µ,L(R

n) possible with µ = 0

(which means that f ∈ F1,1
L (Rn)), x0 ∈ Q, and γ0 > 0. Define

ϕ0(x) := f(x0) +
γ0
2
∥x− x0∥22,

ϕk+1(x) := (1− αk)ϕk(x) + αk

[
f(xQ(yk;L)) +

1

2L
∥gQ(yk;L)∥22 + ⟨gQ(yk;L),x− yk⟩

+
µ

2
∥x− yk∥22

]
,

for the sequences {αk}∞k=0 and {yk}∞k=0 which will be defined later.
Similarly to the previous subsection, we can prove that {ϕk(x)}∞k=0 can be written in the form

ϕk(x) = ϕ∗
k +

γk
2
∥x− vk∥22

for ϕ∗
0 = f(x0), v0 = x0:

γk+1 = (1− αk)γk + αkµ

vk+1 =
1

γk+1
[(1− αk)γkvk + αkµyk − αkgQ(yk;L)],

ϕ∗
k+1 = (1− αk)ϕ

∗
k + αkf(xQ(yk;L)) +

(
αk

2L
−

α2
k

2γk+1

)
∥gQ(yk;L)∥22

+
αk(1− αk)γk

γk+1

(µ
2
∥yk − vk∥22 + ⟨gQ(yk;L),vk − yk⟩

)
.

Now, ϕ∗
0 ≥ f(x0). Assuming that ϕ∗

k ≥ f(xk),

ϕ∗
k+1 ≥ (1− αk)f(xk) + αkf(xQ(yk;L)) +

(
αk

2L
−

α2
k

2γk+1

)
∥gQ(yk;L)∥22

+
αk(1− αk)γk

γk+1
⟨gQ(yk;L),vk − yk⟩

≥ f(xQ(yk;L)) +

(
1

2L
−

α2
k

2γk+1

)
∥gQ(yk;L)∥22

+(1− αk)

⟨
gQ(yk;L),

αkγk
γk+1

(vk − yk) + xk − yk

⟩
+

(1− αk)µ

2
∥xk − yk∥22,

where the last inequality follows from Theorem 10.4.
Therefore, if we choose

xk+1 = xQ(yk;L),

Lα2
k = (1− αk)γk + αkµ,

γk+1 := Lα2
k,

yk =
1

γk + αkµ
(αkγkvk + γk+1xk),
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we obtain ϕ∗
k+1 ≥ f(xk+1) as desired.

Hereafter, we assume that L > µ to exclude the trivial case L = µ with finished in one iteration.

Constant Step Scheme I for the “Optimal” Gradient Method over the “Simple” Set Q

Step 0: Choose x0 ∈ Rn, α0 ∈ (0, 1) such that α0(α0L−µ)
1−α0

> 0, µ ≤ α0(α0L−µ)
1−α0

≤ L,

set y0 := x0, k := 0.
Step 1: Compute f(yk) and f ′(yk).

Step 2: Set xk+1 := xQ(yk;L) := arg min
x∈Q

[
f(yk) + ⟨f ′(yk),x− yk⟩+

αk(αkL− µ)

2(1− αk)
∥x− yk∥22

]
.

Step 3: Compute αk+1 ∈ (0, 1) from the equation α2
k+1 = (1− αk+1)α

2
k +

µ
Lαk+1.

Step 4: Set βk := αk(1−αk)
α2
k+αk+1

.

Step 5: Set yk+1 := xk+1 + βk(xk+1 − xk), k := k + 1 and go to Step 1.

The rate of converge of this algorithm is exactly the same as the previous ones, but it is necessary
to solve a convex program in Step 2 for each iteration.

10.1 Exercises

1. Prove Lemma 10.2

11 Extension for the Min-Max Problem

Given fi ∈ S1,1,
µ,L(R

n) (i = 1, 2, . . . ,m), we define the following function f : Rn → R,

f(x) := max
1≤i≤m

fi(x) for x ∈ Rn

This function is non-differentiable in general, but we will see that the method discussed so far can
be easily adapted for the following min-max-type convex optimization problem.{

minimize f(x)
subject to x ∈ Q,

(16)

where Q is a closed convex set with a “simple” structure, and f(x) is defined as above.
For a given x̄ ∈ Rn, let us define the following linearization of f(x) at x̄.

f(x̄;x) := max
1≤i≤m

[
fi(x̄) + ⟨f ′

i(x̄),x− x̄⟩
]
, for x ∈ Rn

Lemma 11.1 Let fi ∈ S1,1
µ,L(R

n) (i = 1, 2, . . . ,m). For x ∈ Rn, we have

f(x) ≥ f(x̄;x) +
µ

2
∥x− x̄∥22,

f(x) ≤ f(x̄;x) +
L

2
∥x− x̄∥22.

Proof:
It follows from the properties of fi ∈ S1,1

µ,L(R
n).

Theorem 11.2 A point x∗ ∈ Q is an optimal solution of (16), if and only if

f(x∗;x) ≥ f(x∗;x∗) = f(x∗), ∀x ∈ Q.
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Proof:
It can be proved similarly to Lemma 10.1.

Corollary 11.3 Let x∗ be a minimum of a max-type function f(x) over the set Q. If f ∈ S1
µ(Rn),

then,

f(x) ≥ f(x∗) +
µ

2
∥x− x∗∥22, ∀x ∈ Q.

Proof:
From Lemma 11.1 and Theorem 11.2, we have ∀x ∈ Q,

f(x) ≥ f(x∗;x) +
µ

2
∥x− x∗∥22

≥ f(x∗;x∗) +
µ

2
∥x− x∗∥22 = f(x∗) +

µ

2
∥x− x∗∥22.

Lemma 11.4 Let fi ∈ S1
µ(Rn) for (i = 1, 2, . . . ,m) with µ > 0 and Q be a closed convex set. Then

there is a unique solution x∗ for the problem (16).

Proof:
Again, the proof is similar to the one of Lemma 10.2.

Definition 11.5 Let fi ∈ C1(Rn) (i = 1, 2, . . . ,m), Q a closed convex set, x̄ ∈ Rn, and γ > 0.
Denote by

xf (x̄; γ) := arg min
y∈Q

[
f(x̄;y) +

γ

2
∥y − x̄∥22

]
,

gf (x̄; γ) := γ(x̄− xf (x̄; γ)).

We call gf (x̄; γ) the gradient mapping of max-type function f on Q. Observe that due to
Lemma 11.4, xf (x̄; γ) exists and it is uniquely defined.

Notice also that when m = 1, the above definition coincides with Definition 10.3.

Theorem 11.6 Let fi ∈ S1,1
µ,L(R

n) (i = 1, 2, . . . ,m), γ ≥ L, γ > 0, Q a closed convex set, and
x̄ ∈ Rn. Then

f(x) ≥ f(xf (x̄; γ)) + ⟨gf (x̄; γ),x− x̄⟩+ 1

2γ
∥gf (x̄; γ)∥22 +

µ

2
∥x− x̄∥22, ∀x ∈ Q.

Proof: Let us use the following notation: xf := xf (x̄; γ) and gf := gf (x̄; γ).
From Lemma 11.1 and Corollary 11.3, we have ∀x ∈ Q,

f(x)− µ

2
∥x− x̄∥22 ≥ f(x̄;x)

= f(x̄;x) +
γ

2
∥x− x̄∥22 −

γ

2
∥x− x̄∥22

≥ f(x̄;xf ) +
γ

2
∥xf − x̄∥22 +

γ

2
∥x− xf∥22 −

γ

2
∥x− x̄∥22

= f(x̄;xf ) +
γ

2
∥xf − x̄∥22 +

γ

2
⟨x̄− xf , 2x− xf − x̄⟩

= f(x̄;xf ) +
γ

2
∥xf − x̄∥22 +

γ

2
⟨x̄− xf , 2(x− x̄) + x̄− xf ⟩

= f(x̄;xf ) +
γ

2
∥xf − x̄∥22 + ⟨gf ,x− x̄⟩+ 1

2γ
∥gf∥22

≥ f(xf ) + ⟨gf ,x− x̄⟩+ 1

2γ
∥gf∥22,
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where the last inequality is due to the fact that γ ≥ L.

We are ready to define our estimated sequence. Assume that fi ∈ S1,1
µ,L(R

n) (i = 1, 2, . . . ,m)

possible with µ = 0 (which means that fi ∈ F1,1
L (Rn)), x0 ∈ Q, and γ0 > 0. Define

ϕ0(x) := f(x0) +
γ0
2
∥x− x0∥22,

ϕk+1(x) := (1− αk)ϕk(x) + αk

[
f(xf (yk;L)) +

1

2L
∥gf (yk;L)∥22 + ⟨gf (yk;L),x− yk⟩

+
µ

2
∥x− yk∥22

]
,

for the sequences {αk}∞k=0 and {yk}∞k=0 which will be defined later.
Similarly to the previous subsection, we can prove that {ϕk(x)}∞k=0 can be written in the form

ϕk(x) = ϕ∗
k +

γk
2
∥x− vk∥22

for ϕ∗
0 = f(x0), v0 = x0:

γk+1 = (1− αk)γk + αkµ

vk+1 =
1

γk+1
[(1− αk)γkvk + αkµyk − αkgf (yk;L)],

ϕ∗
k+1 = (1− αk)ϕ

∗
k + αkf(xf (yk;L)) +

(
αk

2L
−

α2
k

2γk+1

)
∥gf (yk;L)∥22

+
αk(1− αk)γk

γk+1

(µ
2
∥yk − vk∥22 + ⟨gf (yk;L),vk − yk⟩

)
.

Now, ϕ∗
0 ≥ f(x0). Assuming that ϕ∗

k ≥ f(xk),

ϕ∗
k+1 ≥ (1− αk)f(xk) + αkf(xf (yk;L)) +

(
αk

2L
−

α2
k

2γk+1

)
∥gf (yk;L)∥22

+
αk(1− αk)γk

γk+1
⟨gf (yk;L),vk − yk⟩

≥ f(xf (yk;L)) +

(
1

2L
−

α2
k

2γk+1

)
∥gf (yk;L)∥22

+(1− αk)

⟨
gf (yk;L),

αkγk
γk+1

(vk − yk) + xk − yk

⟩
+

(1− αk)µ

2
∥xk − yk∥22,

where the last inequality follows from Theorem 11.6.
Therefore, if we choose

xk+1 = xf (yk;L),

Lα2
k = (1− αk)γk + αkµ,

γk+1 := Lα2
k,

yk =
1

γk + αkµ
(αkγkvk + γk+1xk),

we obtain ϕ∗
k+1 ≥ f(xk+1) as desired.

Hereafter, we assume that L > µ to exclude the trivial case L = µ with finished in one iteration.
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Constant Step Scheme I for the “Optimal” Gradient Method for the Min-Max
Problem

Step 0: Choose x0 ∈ Rn, α0 ∈ (0, 1) such that α0(α0L−µ)
1−α0

> 0, µ ≤ α0(α0L−µ)
1−α0

≤ L,

set y0 := x0, k := 0.
Step 1: Compute f(yk) and f ′(yk).

Step 2: Set xk+1 := xf (yk;L) := arg min
x∈Q

[
max

i=1,2,...,m
fi(yk) + ⟨f ′

i(yk),x− yk⟩

+αk(αkL−µ)
2(1−αk)

∥x− yk∥22
]
.

Step 3: Compute αk+1 ∈ (0, 1) from the equation α2
k+1 = (1− αk+1)α

2
k +

µ
Lαk+1.

Step 4: Set βk := αk(1−αk)
α2
k+αk+1

.

Step 5: Set yk+1 := xk+1 + βk(xk+1 − xk), k := k + 1 and go to Step 1.

The rate of converge of this algorithm is exactly the same as the previous ones, but it is necessary
to solve a convex program in Step 2 for each iteration.

You can find a more efficient version of the algorithm in: Yu. Nesterov, “Smooth minimization of
non-smooth functions,” Mathematical Programming 103 (2005), pp. 127–152, where the algorithm
is extended for objective functions which are not differentiable.
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