1
= ¢(zq) — ZHQQH% +{g9g, T — Q)

1 _ _
= d(zq) - 5”9@”% +(9¢, T —xq) + (99, — %)

1 .
= ¢(xg) + glngH% +(gg. T — ).

Since v > L, we have ¢(xg) > f(xq), and the result follows. 1

We are ready to define our estimated sequence. Assume that f € S,lj,lL (R™) possible with p =0
(which means that f € flL’l(R”)), o € Q, and 9 > 0. Define

do@) = f(@o)+ Ll — ol
1
Grv1(x) = (1 —ap)op(®) + [f(xQ(ka L)+ 57 9@ D3 + {9y L) & — yy)
+Llle - wil)

for the sequences {ay}32, and {y;}72, which will be defined later.
Similarly to the previous subsection, we can prove that {¢x ()}, can be written in the form

* Yk
() = ¢p + 3”33 — i3
for ¢f = f(xo), vo = xo:
Yer1 = (I —ap)w +opp

1
Vi1 = —[(1 — ap) vk + appyy — Oéng(yk; L),
Vk+1

G = (- a6+ onf (o D) + (55— 525 ) log(wia D)

+Oék(1 — ak)')’k
YE+1

1
(§Hyk — w5 + (90(Yg; L), vi, — yk>) :

Now, ¢f > f(xo). Assuming that ¢} > f(xy),

ag ai

2L 2Vk41

o > <1—ak>f<wk>+akf<mQ<yk;L>>+(

1 _
+Oék( ak)'Yk<
Ve+1

) l90we: DI

90y L), vk — yp)

1 a?
o )+ (57~ 5ot ) oo DI

v

1 —
ank

OLRYE
(1 - ap) <gQ<yk;L>, O (4 ) 4 yk> ;
Vk+1

where the last inequality follows from Theorem 10.4.
Therefore, if we choose

xpr1 = xQ(yp L),
Laj = (1—op)y + ogp,
Vitl = La%,
1
Y, = ——— (W VE + Vet+12k),
k o u( +1Tk)
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we obtain ¢y, > f(zk11) as desired.
Hereafter, we assume that L > p to exclude the trivial case L = p with finished in one iteration.

Constant Step Scheme 1 for the “Optimal” Gradient Method over the “Simple” Set @)

Step 0: Choose xy € R", ag € (0,1) such that 0“0(1‘10750—#) >0, p < O“)(la_oiio_“) <L,
set Yo 1= xo, k := 0.
Step 1: Compute f(y;) and f'(yy)-
Step 2 Set a1 = gy L) = argin | 1() + (7 (w2 1) + 57— o~y .
TeQ 2(1 — ay)
Step 3: Compute a1 € (0,1) from the equation of | = (1 — cgy1) +
Step 4: Set [y := a(l-ar)

2
ap+ogy1

Step 5: Set Y := Tp11 + Br(Tr41 — k), k :=k+ 1 and go to Step 1.

%ak+1~

The rate of converge of this algorithm is exactly the same as the previous ones, but it is necessary
to solve a convex program in Step 2 for each iteration.

10.1 Exercises

1. Prove Lemma 10.2

11 Extension for the Min-Max Problem
Given f; € Si’i(R") (1=1,2,...,m), we define the following function f : R" — R,

flx) = [ fi(x) for zecR

This function is non-differentiable in general, but we will see that the method discussed so far can
be easily adapted for the following min-max-type convex optimization problem.

{ minimize  f(x) (16)

subject to @« € @,

where @ is a closed convex set with a “simple” structure, and f(x) is defined as above.
For a given & € R", let us define the following linearization of f(x) at &.

f(@;x) .= max [fi(x) + (f{(®),z —z)], for x € R"

1<i<m

Lemma 11.1 Let f; € SilL(R”) (1=1,2,...,m). For x € R", we have
fad
2

_ L 2
flx) < f(Z;2) + §Hw — 3.

|l — 23,

f(x) = f(@;x) +

Proof:
It follows from the properties of f; € S;lL(}R”) 1

Theorem 11.2 A point * € @ is an optimal solution of (16), if and only if

f@z) > f(a™2") = f(z"), Veeq.
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Proof:
It can be proved similarly to Lemma 10.1. 1

Corollary 11.3 Let «* be a minimum of a max-type function f(x) over the set Q. If f € S}L(R”),
then,

@) 2 f(@)+ flle—a'3 vecq.

Proof:
From Lemma 11.1 and Theorem 11.2, we have V& € @,

* ILL *
f@) > @)+ e - 23
> f(aa) + Sla — 2t} = fa7) + Slle — 273
1

Lemma 11.4 Let f; € SL(]R”) for (¢ =1,2,...,m) with o > 0 and @ be a closed convex set. Then
there is a unique solution «* for the problem (16).

Proof:
Again, the proof is similar to the one of Lemma 10.2. 1

Definition 11.5 Let f; € C*(R") (i = 1,2,...,m), Q a closed convex set, z € R", and v > 0.
Denote by

. — : . Ty 112
xp(T;7y) - arg min f(@;y) + 2Hy zlj3|,
gr(@;y) = (@ —xp(T57))

We call g¢(z;v) the gradient mapping of max-type function f on Q. Observe that due to
Lemma 11.4, xf(Z;) exists and it is uniquely defined.

Notice also that when m = 1, the above definition coincides with Definition 10.3.

Theorem 11.6 Let f; € S;’lL(R”) (1t =1,2,...,m), vy > L, v >0, Q a closed convex set, and
x € R". Then

1
F(@) > g (@) +g;@). @~ &)+ 5-llgy @)+ Sle -2l veecQ

Proof:  Let us use the following notation: xy := x(Z;v) and gy := g;(Z;7).
From Lemma 11.1 and Corollary 11.3, we have V& € @,

W _ _
@) -Ele -2l > f@e)
- g _ Y _
= @)+ e -3 - L)z - a3

(
> f@a)+ g lles -2+ 2w — a3 - e - 23
= f(@xf)+ %Hccf —z|3+ %<5€ —xf2x —xf— )

(

I
~
8
8

g 2 Y- L
)+l —als+ @ —ap 2w —2) + 2 -2y
_ gl _ 1
= f@ap)+gllzs — 2l +lgpe —2) + o llgyll
1
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where the last inequality is due to the fact that v > L. 1
We are ready to define our estimated sequence. Assume that f; € S;’IL(R") (i=1,2,...,m)
possible with g = 0 (which means that f; € .7:}:’1(]1%”)), xo € Q, and vy > 0. Define

do(@) = f(@o)+ 5l — ol
ry1(x) = (1 —ap)dr(x) + a [f(wf(yk; L)) + %Hgf(yk; D)3+ (gs(yx: L), @ — yy,)
+Zlle —yil3] .

for the sequences {ay}32, and {y;}72, which will be defined later.
Similarly to the previous subsection, we can prove that {¢x ()}, can be written in the form

Tk
On(@) = 7 + 2z — vyl

for ¢f = f(x0), vo = xo:

Ye+r1 = (1 — o)y + ogp
1
vy = — (1 — ap)nevr + arpyy — g (yg; L)),
V41
i = (1= aw)of +aud(oslus D)+ (5 = 525 gy D3
= — Qf ag Y a5 gr\Yg;
k+1 k Yk 2L 27pm1 f\Yk 2
ap(l —ag)y (1
+ S (Bl — wnl + {9 (i L) ok —w))
Vk+1

Now, ¢§ > f(xo). Assuming that ¢; > f(xx),

G 2 (L-anf@) +auf(estus L) + (55 - 52 ) s D)
+M<gf(yk§l/)avk — Yg)
YE+1

1 a?
> x L)+ [ — — k > i L 2
f( f(yk ) (2L 21 ||gf(yk )i

(1—ay)

"
M g — 3

OpYE
+(1 — ) <gf(yk;L), (vk—yk)+wk—yk>+
Yk+1

where the last inequality follows from Theorem 11.6.
Therefore, if we choose

1 = Tp(yp L),
Laj = (1—op)y + ok,
Ve+1 = LaIQqa
1
Y = ——— (Vg + Ve+12k),
F Y + Oék,u( +1%%)

we obtain ¢y, > f(zk11) as desired.
Hereafter, we assume that L > p to exclude the trivial case L = p with finished in one iteration.
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Constant Step Scheme I for the “Optimal” Gradient Method for the Min-Max
Problem
Step 0: Choose g € R", o € (0,1) such that M >0, u< w <L,
set yg := o, k :=0.
Step 1: Compute f(y;) and f'(yy).

Step 2: Set wyyy 1= xy(yy; L) :=argmin | max  fi(yy) + (fityi)s® — yi)

L
+°”€<‘;‘kak;‘ |z — yl13

Step 3: Compute a1 € (0,1) from the equation o, | = (1 — cagpy1)ap + Fag.

Step 4: Set 8 : %@:‘ﬁ

Step 5: Set y;,q := Tp1 + Br(Tr+1 — k), k:=k + 1 and go to Step 1.

The rate of converge of this algorithm is exactly the same as the previous ones, but it is necessary
to solve a convex program in Step 2 for each iteration.

You can find a more efficient version of the algorithm in: Yu. Nesterov, “Smooth minimization of
non-smooth functions,” Mathematical Programming 103 (2005), pp. 127-152, where the algorithm
is extended for objective functions which are not differentiable.
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