5th Report for Topics in Mathematical Optimization

Tokyo Institute of Technology

Department Mathematical and Computing Sciences
Mituhiro Fukuda

Due date July 25, 2013

1. Let $\mu \leq \gamma_{0} \leq L$ such that $\gamma_{0}>0$ and $\mu<L$. Also let $\boldsymbol{x}_{0}=\boldsymbol{v}_{0} \in \mathbb{R}^{n}$. Defining

$$
\begin{aligned}
\gamma_{k+1} & :=L \alpha_{k}^{2}=\left(1-\alpha_{k}\right) \gamma_{k}+\alpha_{k} \mu \\
\boldsymbol{y}_{k} & =\frac{\alpha_{k} \gamma_{k} \boldsymbol{v}_{k}+\gamma_{k+1} \boldsymbol{x}_{k}}{\gamma_{k}+\alpha_{k} \mu} \\
\boldsymbol{x}_{k+1} & =\boldsymbol{y}_{k}-\frac{1}{L} f^{\prime}\left(\boldsymbol{y}_{k}\right) \\
\boldsymbol{v}_{k+1} & =\frac{\left(1-\alpha_{k}\right) \gamma_{k} \boldsymbol{v}_{k}+\alpha_{k} \mu \boldsymbol{y}_{k}-\alpha_{k} f^{\prime}\left(\boldsymbol{y}_{k}\right)}{\gamma_{k+1}}
\end{aligned}
$$

where $\alpha_{k} \in(0,1)$ is the root of the equation $L \alpha_{k}^{2}-\left(1-\alpha_{k}\right) \gamma_{k}-\alpha_{k} \mu=0$, show the following expressions:
(a) $\boldsymbol{v}_{k+1}=\boldsymbol{x}_{k}+\frac{1}{\alpha_{k}}\left(\boldsymbol{x}_{k+1}-\boldsymbol{x}_{k}\right)$.
(b) $\boldsymbol{y}_{k+1}=\boldsymbol{x}_{k+1}+\beta_{k}\left(\boldsymbol{x}_{k+1}-\boldsymbol{x}_{k}\right)$ for $\beta_{k}=\frac{\alpha_{k+1} \gamma_{k+1}\left(1-\alpha_{k}\right)}{\alpha_{k}\left(\gamma_{k+1}+\alpha_{k+1} \mu\right)}$.
(c) $\beta_{k}=\frac{\alpha_{k}\left(1-\alpha_{k}\right)}{\alpha_{k}^{2}+\alpha_{k+1}}$.
(d) $\alpha_{k+1}^{2}=\left(1-\alpha_{k+1}\right) \alpha_{k}^{2}+\frac{\mu}{L} \alpha_{k+1}$.
2. Prove Lemma 10.2.

