Finally, if $\mu > 0$ and we choose $\gamma_0 := \alpha_0 (\alpha_0 L - \mu)/(1 - \alpha_0) = \mu$, we have a further simplification.

$$\alpha_k = \sqrt{\frac{\mu}{L}}, \quad \beta_k = \frac{\sqrt{L} - \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}}$$

and we end up with

Constant Step Scheme II for the "Optimal" Gradient Method	
Step 0:	Choose $\boldsymbol{x}_0 \in \mathbb{R}^n$, set $\boldsymbol{y}_0 := \boldsymbol{x}_0$ and $k := 0$.
	Compute $f'(\boldsymbol{y}_k)$.
	Set $\boldsymbol{x}_{k+1} := \boldsymbol{y}_k - \frac{1}{L}f'(\boldsymbol{y}_k).$
Step 3:	Set $\boldsymbol{y}_{k+1} := \boldsymbol{x}_{k+1} + rac{\sqrt{L} - \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}} (\boldsymbol{x}_{k+1} - \boldsymbol{x}_k), k := k+1 ext{ and go to Step 1.}$

You can find a variation of this method for instance in: C. C. Gonzaga and E. W. Karas, "Fine tuning Nesterov's steepest descent algorithm for differentiable convex programming," Mathematical Programming, 138 (2013), pp. 141–166.

9.1 Exercises

- 1. Complete the proof of Lemma 9.3.
- 2. We want to justify the Constant Step Scheme I of the "Optimal" Gradient Method. This is a particular case of the General Scheme for the "Optimal" Gradient Method for the following choice:

$$\begin{split} \gamma_{k+1} &:= L\alpha_k^2 = (1 - \alpha_k)\gamma_k + \alpha_k\mu \\ \boldsymbol{y}_k &= \frac{\alpha_k\gamma_k\boldsymbol{v}_k + \gamma_{k+1}\boldsymbol{x}_k}{\gamma_k + \alpha_k\mu} \\ \boldsymbol{x}_{k+1} &= \boldsymbol{y}_k - \frac{1}{L}f'(\boldsymbol{y}_k) \\ \boldsymbol{v}_{k+1} &= \frac{(1 - \alpha_k)\gamma_k\boldsymbol{v}_k + \alpha_k\mu\boldsymbol{y}_k - \alpha_kf'(\boldsymbol{y}_k)}{\gamma_{k+1}}. \end{split}$$

(a) Show that $v_{k+1} = x_k + \frac{1}{\alpha_k}(x_{k+1} - x_k)$.

- (b) Show that $\boldsymbol{y}_{k+1} = \boldsymbol{x}_{k+1} + \beta_k (\boldsymbol{x}_{k+1} \boldsymbol{x}_k)$ for $\beta_k = \frac{\alpha_{k+1}\gamma_{k+1}(1-\alpha_k)}{\alpha_k(\gamma_{k+1}+\alpha_{k+1}\mu)}$. (c) Show that $\beta_k = \frac{\alpha_k(1-\alpha_k)}{\alpha_k^2 + \alpha_{k+1}}$.
- (d) Explain why $\alpha_{k+1}^2 = (1 \alpha_{k+1})\alpha_k^2 + \frac{\mu}{L}\alpha_{k+1}$.

Extension of the "Optimal" Gradient Method (Accelerated 10 Gradient Method) for "Simple" Convex Sets

We are interested now to solve the following problem:

$$\begin{cases} \text{minimize} & f(\boldsymbol{x}) \\ \text{subject to} & \boldsymbol{x} \in Q \end{cases}$$
(15)

where $f: \mathbb{R}^n \to \mathbb{R}$ and Q is a <u>closed convex</u> subset of \mathbb{R}^n , simple enough to have an easy projection onto it, e.g., positive orthant, n dimensional box, simplex, Euclidean ball, etc.

Lemma 10.1 Let $f \in \mathcal{F}^1(\mathbb{R}^n)$ and Q be a closed convex set. The point x^* is a solution of (15) if and only if

$$\langle f'(\boldsymbol{x}^*), \boldsymbol{x} - \boldsymbol{x}^* \rangle \geq 0, \quad \forall \boldsymbol{x} \in Q.$$

Proof:

Indeed, if the inequality is true,

$$f(\boldsymbol{x}) \geq f(\boldsymbol{x}^*) + \langle f'(\boldsymbol{x}^*), \boldsymbol{x} - \boldsymbol{x}^* \rangle \geq f(\boldsymbol{x}^*) \quad \forall \boldsymbol{x} \in Q.$$

For the converse, let \mathbf{x}^* be an optimal solution of the minimization problem (15). Assume by contradiction that there is a $\mathbf{x} \in Q$ such that $\langle f'(\mathbf{x}^*), \mathbf{x} - \mathbf{x}^* \rangle < 0$. Consider the function $\phi(\alpha) = f(\mathbf{x}^* + \alpha(\mathbf{x} - \mathbf{x}^*))$ for $\alpha \in [0, 1]$. Then, $\phi(0) = f(\mathbf{x}^*)$ and $\phi'(0) = \langle f'(\mathbf{x}^*), \mathbf{x} - \mathbf{x}^* \rangle < 0$. Therefore, for $\alpha > 0$ small enough, we have

$$f(x^* + \alpha(x - x^*)) = \phi(\alpha) < \phi(0) = f(x^*)$$

which is a contradiction.

Lemma 10.2 Let $f \in S^1_{\mu}(\mathbb{R}^n)$ with $\mu > 0$, and Q be a closed convex set. Then there exists a unique solution x^* for the problem (15).

Proof: Left for exercise

Definition 10.3 Let $f \in \mathcal{C}^1(\mathbb{R}^n)$, Q a closed convex set, $\bar{x} \in \mathbb{R}^n$, and $\gamma > 0$. Denote by

$$\begin{aligned} \boldsymbol{x}_Q(\bar{\boldsymbol{x}};\gamma) &:= & \arg\min_{\boldsymbol{y}\in Q} \left[f(\bar{\boldsymbol{x}}) + \langle f'(\bar{\boldsymbol{x}}), \boldsymbol{y} - \bar{\boldsymbol{x}} \rangle + \frac{\gamma}{2} \|\boldsymbol{y} - \bar{\boldsymbol{x}}\|_2^2 \right], \\ \boldsymbol{g}_Q(\bar{\boldsymbol{x}};\gamma) &:= & \gamma(\bar{\boldsymbol{x}} - \boldsymbol{x}_Q(\bar{\boldsymbol{x}};\gamma)). \end{aligned}$$

We call $\boldsymbol{g}_Q(\bar{\boldsymbol{x}};\gamma)$ the gradient mapping of f on Q. Observe that due to Lemma 10.2, $\boldsymbol{x}_Q(\bar{\boldsymbol{x}};\gamma)$ exists and it is uniquely defined.

In the case $Q \equiv \mathbb{R}^n$, notice that $\mathbf{x}_Q(\bar{\mathbf{x}}; \gamma) = \bar{\mathbf{x}} - \frac{1}{\gamma} f'(\bar{\mathbf{x}})$ and $\mathbf{g}_Q(\bar{\mathbf{x}}; \gamma) = f'(\bar{\mathbf{x}})$. Therefore, they take the roles of \mathbf{x}_{k+1} and \mathbf{y}_k in the Constant Step Scheme I for the "Optimal" Gradient Method.

Theorem 10.4 Let $f \in \mathcal{S}_{\mu,L}^{1,1}(\mathbb{R}^n)$, $\gamma \ge L$, $\gamma > 0$, Q a closed convex set, and $\bar{x} \in \mathbb{R}^n$. Then

$$f(\boldsymbol{x}) \geq f(\boldsymbol{x}_Q(\bar{\boldsymbol{x}};\gamma)) + \langle \boldsymbol{g}_Q(\bar{\boldsymbol{x}};\gamma), \boldsymbol{x} - \bar{\boldsymbol{x}} \rangle + \frac{1}{2\gamma} \| \boldsymbol{g}_Q(\bar{\boldsymbol{x}};\gamma) \|_2^2 + \frac{\mu}{2} \| \boldsymbol{x} - \bar{\boldsymbol{x}} \|_2^2, \quad \forall \boldsymbol{x} \in Q.$$

Proof:

Let us use the following notation $\boldsymbol{x}_Q := \boldsymbol{x}_Q(\bar{\boldsymbol{x}};\gamma)$ and $\boldsymbol{g}_Q := \boldsymbol{g}_Q(\bar{\boldsymbol{x}};\gamma)$. Consider $\phi(\boldsymbol{x}) := f(\bar{\boldsymbol{x}}) + \langle f'(\bar{\boldsymbol{x}}), \boldsymbol{x} - \bar{\boldsymbol{x}} \rangle + \frac{\gamma}{2} \|\boldsymbol{x} - \bar{\boldsymbol{x}}\|_2^2$.

Then $\phi'(\boldsymbol{x}) = f'(\bar{\boldsymbol{x}}) + \gamma(\boldsymbol{x} - \bar{\boldsymbol{x}})$. Therefore $\forall \boldsymbol{x} \in Q$, we have

$$\langle \phi'(\boldsymbol{x}_Q), \boldsymbol{x} - \boldsymbol{x}_Q \rangle = \langle f'(\bar{\boldsymbol{x}}) + \gamma(\boldsymbol{x}_Q - \bar{\boldsymbol{x}}), \boldsymbol{x} - \boldsymbol{x}_Q \rangle = \langle f'(\bar{\boldsymbol{x}}) - \boldsymbol{g}_Q, \boldsymbol{x} - \boldsymbol{x}_Q \rangle \ge 0$$

due to Lemma 10.1.

Hence, $\forall \boldsymbol{x} \in Q$,

$$\begin{aligned} f(\boldsymbol{x}) &- \frac{\mu}{2} \|\boldsymbol{x} - \bar{\boldsymbol{x}}\|_{2}^{2} \geq f(\bar{\boldsymbol{x}}) + \langle f'(\bar{\boldsymbol{x}}), \boldsymbol{x} - \bar{\boldsymbol{x}} \rangle \\ &= f(\bar{\boldsymbol{x}}) + \langle f'(\bar{\boldsymbol{x}}), \boldsymbol{x} - \boldsymbol{x}_{Q} \rangle + \langle f'(\bar{\boldsymbol{x}}), \boldsymbol{x}_{Q} - \bar{\boldsymbol{x}} \rangle \\ &\geq f(\bar{\boldsymbol{x}}) + \langle \boldsymbol{g}_{Q}, \boldsymbol{x} - \boldsymbol{x}_{Q} \rangle + \langle f'(\bar{\boldsymbol{x}}), \boldsymbol{x}_{Q} - \bar{\boldsymbol{x}} \rangle \\ &= \phi(\boldsymbol{x}_{Q}) - \frac{\gamma}{2} \|\boldsymbol{x}_{Q} - \bar{\boldsymbol{x}}\|_{2}^{2} + \langle \boldsymbol{g}_{Q}, \boldsymbol{x} - \boldsymbol{x}_{Q} \rangle \end{aligned}$$