Finally, if $\mu>0$ and we choose $\gamma_{0}:=\alpha_{0}\left(\alpha_{0} L-\mu\right) /\left(1-\alpha_{0}\right)=\mu$, we have a further simplification.

$$
\alpha_{k}=\sqrt{\frac{\mu}{L}}, \quad \beta_{k}=\frac{\sqrt{L}-\sqrt{\mu}}{\sqrt{L}+\sqrt{\mu}}
$$

and we end up with

## Constant Step Scheme II for the "Optimal" Gradient Method

Step 0: Choose $\boldsymbol{x}_{0} \in \mathbb{R}^{n}$, set $\boldsymbol{y}_{0}:=\boldsymbol{x}_{0}$ and $k:=0$.
Step 1: Compute $f^{\prime}\left(\boldsymbol{y}_{k}\right)$.
Step 2: Set $\boldsymbol{x}_{k+1}:=\boldsymbol{y}_{k}-\frac{1}{L} f^{\prime}\left(\boldsymbol{y}_{k}\right)$.
Step 3: Set $\boldsymbol{y}_{k+1}:=\boldsymbol{x}_{k+1}+\frac{\sqrt{L}-\sqrt{\mu}}{\sqrt{L}+\sqrt{\mu}}\left(\boldsymbol{x}_{k+1}-\boldsymbol{x}_{k}\right), k:=k+1$ and go to Step 1.
You can find a variation of this method for instance in: C. C. Gonzaga and E. W. Karas, "Fine tuning Nesterov's steepest descent algorithm for differentiable convex programming," Mathematical Programming, 138 (2013), pp. 141-166.

### 9.1 Exercises

1. Complete the proof of Lemma 9.3.
2. We want to justify the Constant Step Scheme I of the "Optimal" Gradient Method. This is a particular case of the General Scheme for the "Optimal" Gradient Method for the following choice:

$$
\begin{aligned}
\gamma_{k+1} & :=L \alpha_{k}^{2}=\left(1-\alpha_{k}\right) \gamma_{k}+\alpha_{k} \mu \\
\boldsymbol{y}_{k} & =\frac{\alpha_{k} \gamma_{k} \boldsymbol{v}_{k}+\gamma_{k+1} \boldsymbol{x}_{k}}{\gamma_{k}+\alpha_{k} \mu} \\
\boldsymbol{x}_{k+1} & =\boldsymbol{y}_{k}-\frac{1}{L} f^{\prime}\left(\boldsymbol{y}_{k}\right) \\
\boldsymbol{v}_{k+1} & =\frac{\left(1-\alpha_{k}\right) \gamma_{k} \boldsymbol{v}_{k}+\alpha_{k} \mu \boldsymbol{y}_{k}-\alpha_{k} f^{\prime}\left(\boldsymbol{y}_{k}\right)}{\gamma_{k+1}}
\end{aligned}
$$

(a) Show that $\boldsymbol{v}_{k+1}=\boldsymbol{x}_{k}+\frac{1}{\alpha_{k}}\left(\boldsymbol{x}_{k+1}-\boldsymbol{x}_{k}\right)$.
(b) Show that $\boldsymbol{y}_{k+1}=\boldsymbol{x}_{k+1}+\beta_{k}\left(\boldsymbol{x}_{k+1}-\boldsymbol{x}_{k}\right)$ for $\beta_{k}=\frac{\alpha_{k+1} \gamma_{k+1}\left(1-\alpha_{k}\right)}{\alpha_{k}\left(\gamma_{k+1}+\alpha_{k+1} \mu\right)}$.
(c) Show that $\beta_{k}=\frac{\alpha_{k}\left(1-\alpha_{k}\right)}{\alpha_{k}^{2}+\alpha_{k+1}}$.
(d) Explain why $\alpha_{k+1}^{2}=\left(1-\alpha_{k+1}\right) \alpha_{k}^{2}+\frac{\mu}{L} \alpha_{k+1}$.

## 10 Extension of the "Optimal" Gradient Method (Accelerated Gradient Method) for "Simple" Convex Sets

We are interested now to solve the following problem:

$$
\begin{cases}\text { minimize } & f(\boldsymbol{x})  \tag{15}\\ \text { subject to } & \boldsymbol{x} \in Q\end{cases}
$$

where $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $Q$ is a closed convex subset of $\mathbb{R}^{n}$, simple enough to have an easy projection onto it, e.g., positive orthant, $n$ dimensional box, simplex, Euclidean ball, etc.

Lemma 10.1 Let $f \in \mathcal{F}^{1}\left(\mathbb{R}^{n}\right)$ and $Q$ be a closed convex set. The point $\boldsymbol{x}^{*}$ is a solution of (15) if and only if

$$
\left\langle f^{\prime}\left(\boldsymbol{x}^{*}\right), \boldsymbol{x}-\boldsymbol{x}^{*}\right\rangle \geq 0, \quad \forall \boldsymbol{x} \in Q
$$

Proof:
Indeed, if the inequality is true,

$$
f(\boldsymbol{x}) \geq f\left(\boldsymbol{x}^{*}\right)+\left\langle f^{\prime}\left(\boldsymbol{x}^{*}\right), \boldsymbol{x}-\boldsymbol{x}^{*}\right\rangle \geq f\left(\boldsymbol{x}^{*}\right) \quad \forall \boldsymbol{x} \in Q
$$

For the converse, let $\boldsymbol{x}^{*}$ be an optimal solution of the minimization problem (15). Assume by contradiction that there is a $\boldsymbol{x} \in Q$ such that $\left\langle f^{\prime}\left(\boldsymbol{x}^{*}\right), \boldsymbol{x}-\boldsymbol{x}^{*}\right\rangle<0$. Consider the function $\phi(\alpha)=f\left(\boldsymbol{x}^{*}+\alpha\left(\boldsymbol{x}-\boldsymbol{x}^{*}\right)\right)$ for $\alpha \in[0,1]$. Then, $\phi(0)=f\left(\boldsymbol{x}^{*}\right)$ and $\phi^{\prime}(0)=\left\langle f^{\prime}\left(\boldsymbol{x}^{*}\right), \boldsymbol{x}-\boldsymbol{x}^{*}\right\rangle<0$. Therefore, for $\alpha>0$ small enough, we have

$$
f\left(\boldsymbol{x}^{*}+\alpha\left(\boldsymbol{x}-\boldsymbol{x}^{*}\right)\right)=\phi(\alpha)<\phi(0)=f\left(\boldsymbol{x}^{*}\right)
$$

which is a contradiction.
Lemma 10.2 Let $f \in \mathcal{S}_{\mu}^{1}\left(\mathbb{R}^{n}\right)$ with $\mu>0$, and $Q$ be a closed convex set. Then there exists a unique solution $\boldsymbol{x}^{*}$ for the problem (15).

## Proof:

Left for exercise
Definition 10.3 Let $f \in \mathcal{C}^{1}\left(\mathbb{R}^{n}\right), Q$ a closed convex set, $\overline{\boldsymbol{x}} \in \mathbb{R}^{n}$, and $\gamma>0$. Denote by

$$
\begin{aligned}
\boldsymbol{x}_{Q}(\overline{\boldsymbol{x}} ; \gamma) & :=\arg \min _{\boldsymbol{y} \in Q}\left[f(\overline{\boldsymbol{x}})+\left\langle f^{\prime}(\overline{\boldsymbol{x}}), \boldsymbol{y}-\overline{\boldsymbol{x}}\right\rangle+\frac{\gamma}{2}\|\boldsymbol{y}-\overline{\boldsymbol{x}}\|_{2}^{2}\right], \\
\boldsymbol{g}_{Q}(\overline{\boldsymbol{x}} ; \gamma) & :=\gamma\left(\overline{\boldsymbol{x}}-\boldsymbol{x}_{Q}(\overline{\boldsymbol{x}} ; \gamma)\right) .
\end{aligned}
$$

We call $\boldsymbol{g}_{Q}(\overline{\boldsymbol{x}} ; \gamma)$ the gradient mapping of $f$ on $Q$. Observe that due to Lemma $10.2, \boldsymbol{x}_{Q}(\overline{\boldsymbol{x}} ; \gamma)$ exists and it is uniquely defined.

In the case $Q \equiv \mathbb{R}^{n}$, notice that $\boldsymbol{x}_{Q}(\overline{\boldsymbol{x}} ; \gamma)=\overline{\boldsymbol{x}}-\frac{1}{\gamma} f^{\prime}(\overline{\boldsymbol{x}})$ and $\boldsymbol{g}_{Q}(\overline{\boldsymbol{x}} ; \gamma)=f^{\prime}(\overline{\boldsymbol{x}})$. Therefore, they take the roles of $\boldsymbol{x}_{k+1}$ and $\boldsymbol{y}_{k}$ in the Constant Step Scheme I for the "Optimal" Gradient Method.

Theorem 10.4 Let $f \in \mathcal{S}_{\mu, L}^{1,1}\left(\mathbb{R}^{n}\right), \gamma \geq L, \gamma>0, Q$ a closed convex set, and $\overline{\boldsymbol{x}} \in \mathbb{R}^{n}$. Then

$$
f(\boldsymbol{x}) \geq f\left(\boldsymbol{x}_{Q}(\overline{\boldsymbol{x}} ; \gamma)\right)+\left\langle\boldsymbol{g}_{Q}(\overline{\boldsymbol{x}} ; \gamma), \boldsymbol{x}-\overline{\boldsymbol{x}}\right\rangle+\frac{1}{2 \gamma}\left\|\boldsymbol{g}_{Q}(\overline{\boldsymbol{x}} ; \gamma)\right\|_{2}^{2}+\frac{\mu}{2}\|\boldsymbol{x}-\overline{\boldsymbol{x}}\|_{2}^{2}, \quad \forall \boldsymbol{x} \in Q
$$

Proof:
Let us use the following notation $\boldsymbol{x}_{Q}:=\boldsymbol{x}_{Q}(\overline{\boldsymbol{x}} ; \gamma)$ and $\boldsymbol{g}_{Q}:=\boldsymbol{g}_{Q}(\overline{\boldsymbol{x}} ; \gamma)$. Consider $\phi(\boldsymbol{x}):=$ $f(\overline{\boldsymbol{x}})+\left\langle f^{\prime}(\overline{\boldsymbol{x}}), \boldsymbol{x}-\overline{\boldsymbol{x}}\right\rangle+\frac{\gamma}{2}\|\boldsymbol{x}-\overline{\boldsymbol{x}}\|_{2}^{2}$.

Then $\phi^{\prime}(\boldsymbol{x})=f^{\prime}(\overline{\boldsymbol{x}})+\gamma(\boldsymbol{x}-\overline{\boldsymbol{x}})$. Therefore $\forall \boldsymbol{x} \in Q$, we have

$$
\left\langle\phi^{\prime}\left(\boldsymbol{x}_{Q}\right), \boldsymbol{x}-\boldsymbol{x}_{Q}\right\rangle=\left\langle f^{\prime}(\overline{\boldsymbol{x}})+\gamma\left(\boldsymbol{x}_{Q}-\overline{\boldsymbol{x}}\right), \boldsymbol{x}-\boldsymbol{x}_{Q}\right\rangle=\left\langle f^{\prime}(\overline{\boldsymbol{x}})-\boldsymbol{g}_{Q}, \boldsymbol{x}-\boldsymbol{x}_{Q}\right\rangle \geq 0
$$

due to Lemma 10.1.
Hence, $\forall \boldsymbol{x} \in Q$,

$$
\begin{aligned}
f(\boldsymbol{x})-\frac{\mu}{2}\|\boldsymbol{x}-\overline{\boldsymbol{x}}\|_{2}^{2} & \geq f(\overline{\boldsymbol{x}})+\left\langle f^{\prime}(\overline{\boldsymbol{x}}), \boldsymbol{x}-\overline{\boldsymbol{x}}\right\rangle \\
& =f(\overline{\boldsymbol{x}})+\left\langle f^{\prime}(\overline{\boldsymbol{x}}), \boldsymbol{x}-\boldsymbol{x}_{Q}\right\rangle+\left\langle f^{\prime}(\overline{\boldsymbol{x}}), \boldsymbol{x}_{Q}-\overline{\boldsymbol{x}}\right\rangle \\
& \geq f(\overline{\boldsymbol{x}})+\left\langle\boldsymbol{g}_{Q}, \boldsymbol{x}-\boldsymbol{x}_{Q}\right\rangle+\left\langle f^{\prime}(\overline{\boldsymbol{x}}), \boldsymbol{x}_{Q}-\overline{\boldsymbol{x}}\right\rangle \\
& =\phi\left(\boldsymbol{x}_{Q}\right)-\frac{\gamma}{2}\left\|\boldsymbol{x}_{Q}-\overline{\boldsymbol{x}}\right\|_{2}^{2}+\left\langle\boldsymbol{g}_{Q}, \boldsymbol{x}-\boldsymbol{x}_{Q}\right\rangle
\end{aligned}
$$

