
Finally, if µ > 0 and we choose γ0 := α0(α0L−µ)/(1−α0) = µ, we have a further simplification.

αk =

√
µ

L
, βk =

√
L−√

µ
√
L+

√
µ

and we end up with

Constant Step Scheme II for the “Optimal” Gradient Method

Step 0: Choose x0 ∈ Rn, set y0 := x0 and k := 0.
Step 1: Compute f ′(yk).
Step 2: Set xk+1 := yk − 1

Lf
′(yk).

Step 3: Set yk+1 := xk+1 +
√
L−√

µ√
L+

√
µ
(xk+1 − xk), k := k + 1 and go to Step 1.

You can find a variation of this method for instance in: C. C. Gonzaga and E. W. Karas, “Fine
tuning Nesterov’s steepest descent algorithm for differentiable convex programming,” Mathematical
Programming, 138 (2013), pp. 141–166.

9.1 Exercises

1. Complete the proof of Lemma 9.3.

2. We want to justify the Constant Step Scheme I of the “Optimal” Gradient Method. This is a
particular case of the General Scheme for the “Optimal” Gradient Method for the following
choice:

γk+1 := Lα2
k = (1− αk)γk + αkµ

yk =
αkγkvk + γk+1xk

γk + αkµ

xk+1 = yk −
1

L
f ′(yk)

vk+1 =
(1− αk)γkvk + αkµyk − αkf

′(yk)

γk+1
.

(a) Show that vk+1 = xk +
1
αk

(xk+1 − xk).

(b) Show that yk+1 = xk+1 + βk(xk+1 − xk) for βk =
αk+1γk+1(1−αk)
αk(γk+1+αk+1µ)

.

(c) Show that βk = αk(1−αk)
α2
k+αk+1

.

(d) Explain why α2
k+1 = (1− αk+1)α

2
k +

µ
Lαk+1.

10 Extension of the “Optimal” Gradient Method (Accelerated
Gradient Method) for “Simple” Convex Sets

We are interested now to solve the following problem:{
minimize f(x)
subject to x ∈ Q

(15)

where f : Rn → R and Q is a closed convex subset of Rn, simple enough to have an easy projection
onto it, e.g., positive orthant, n dimensional box, simplex, Euclidean ball, etc.

Lemma 10.1 Let f ∈ F1(Rn) and Q be a closed convex set. The point x∗ is a solution of (15) if
and only if

⟨f ′(x∗),x− x∗⟩ ≥ 0, ∀x ∈ Q.

40



Proof:
Indeed, if the inequality is true,

f(x) ≥ f(x∗) + ⟨f ′(x∗),x− x∗⟩ ≥ f(x∗) ∀x ∈ Q.

For the converse, let x∗ be an optimal solution of the minimization problem (15). Assume
by contradiction that there is a x ∈ Q such that ⟨f ′(x∗),x − x∗⟩ < 0. Consider the function
ϕ(α) = f(x∗ + α(x − x∗)) for α ∈ [0, 1]. Then, ϕ(0) = f(x∗) and ϕ′(0) = ⟨f ′(x∗),x − x∗⟩ < 0.
Therefore, for α > 0 small enough, we have

f(x∗ + α(x− x∗)) = ϕ(α) < ϕ(0) = f(x∗)

which is a contradiction.

Lemma 10.2 Let f ∈ S1
µ(Rn) with µ > 0, and Q be a closed convex set. Then there exists a

unique solution x∗ for the problem (15).

Proof:
Left for exercise

Definition 10.3 Let f ∈ C1(Rn), Q a closed convex set, x̄ ∈ Rn, and γ > 0. Denote by

xQ(x̄; γ) := arg min
y∈Q

[
f(x̄) + ⟨f ′(x̄),y − x̄⟩+ γ

2
∥y − x̄∥22

]
,

gQ(x̄; γ) := γ(x̄− xQ(x̄; γ)).

We call gQ(x̄; γ) the gradient mapping of f on Q. Observe that due to Lemma 10.2, xQ(x̄; γ)
exists and it is uniquely defined.

In the case Q ≡ Rn, notice that xQ(x̄; γ) = x̄ − 1
γ f

′(x̄) and gQ(x̄; γ) = f ′(x̄). Therefore, they
take the roles of xk+1 and yk in the Constant Step Scheme I for the “Optimal” Gradient Method.

Theorem 10.4 Let f ∈ S1,1
µ,L(R

n), γ ≥ L, γ > 0, Q a closed convex set, and x̄ ∈ Rn. Then

f(x) ≥ f(xQ(x̄; γ)) + ⟨gQ(x̄; γ),x− x̄⟩+ 1

2γ
∥gQ(x̄; γ)∥22 +

µ

2
∥x− x̄∥22, ∀x ∈ Q.

Proof:
Let us use the following notation xQ := xQ(x̄; γ) and gQ := gQ(x̄; γ). Consider ϕ(x) :=

f(x̄) + ⟨f ′(x̄),x− x̄⟩+ γ
2∥x− x̄∥22.

Then ϕ′(x) = f ′(x̄) + γ(x− x̄). Therefore ∀x ∈ Q, we have

⟨ϕ′(xQ),x− xQ⟩ = ⟨f ′(x̄) + γ(xQ − x̄),x− xQ⟩ = ⟨f ′(x̄)− gQ,x− xQ⟩ ≥ 0

due to Lemma 10.1.
Hence, ∀x ∈ Q,

f(x)− µ

2
∥x− x̄∥22 ≥ f(x̄) + ⟨f ′(x̄),x− x̄⟩

= f(x̄) + ⟨f ′(x̄),x− xQ⟩+ ⟨f ′(x̄),xQ − x̄⟩
≥ f(x̄) + ⟨gQ,x− xQ⟩+ ⟨f ′(x̄),xQ − x̄⟩

= ϕ(xQ)−
γ

2
∥xQ − x̄∥22 + ⟨gQ,x− xQ⟩
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