
General Scheme for the “Optimal” Gradient Method

Step 0: Choose x0 ∈ Rn, let γ0 > 0 such that L ≥ γ0 ≥ µ ≥ 0.
Set v0 := x0 and k := 0.

Step 1: Compute αk ∈ (0, 1] from the equation Lα2
k = (1− αk)γk + αkµ.

Step 2: Set γk+1 := (1− αk)γk + αkµ, yk :=
αkγkvk+γk+1xk

γk+αkµ
.

Step 3: Compute f(yk) and f ′(yk).
Step 4: Find xk+1 such that f(xk+1) ≤ f(yk)− 1

2L∥f
′(yk)∥22 using “line search”.

Step 5: Set vk+1 :=
(1−αk)γkvk+αkµyk−αkf

′(yk)
γk+1

, k := k + 1 and go to Step 1.

Theorem 9.6 Consider f ∈ S1,1
µ,L(R

n), possible with µ = 0 (which means that f ∈ F1,1
L (Rn)). The

general scheme of the “optimal” gradient method generates a sequence {xk}∞k=0 such that

f(xk)− f(x∗) ≤ λk

[
f(x0) +

γ0
2
∥x∗ − x0∥22 − f(x∗)

]
,

where α−1 = 0 and λk =

k−1∏
i=−1

(1− αi). Moreover,

λk ≤ min

{(
1−

√
µ

L

)k

,
4L

(2
√
L+ k

√
γ0)2

}
.

Proof:
The first part is obvious from the definition and Lemma 9.2.

We already know that αk ≥
√

µ
L , therefore,

λk =

k−1∏
i=−1

(1− αi) =

k−1∏
i=0

(1− αi) ≤
(
1−

√
µ

L

)k

,

which only has a meaning if µ > 0. For the case µ = 0, let us prove first that γk = γ0λk. Obviously
γ0 = γ0λ0, and assuming the induction hypothesis,

γk+1 = (1− αk)γk + αkµ = (1− αk)γk = (1− αk)γ0λk = γ0λk+1.

Therefore, Lα2
k = γk+1 = γ0λk+1. Since λk is a decreasing sequence

1√
λk+1

− 1√
λk

=

√
λk −

√
λk+1√

λkλk+1

=
λk − λk+1√

λkλk+1(
√
λk +

√
λk+1)

≥ λk − λk+1

2λk

√
λk+1

=
λk − (1− αk)λk

2λk

√
λk+1

=
αk

2
√

λk+1

=
1

2

√
γ0
L
.

Thus
1√
λk

≥ 1 +
k

2

√
γ0
L

and we have the result.

Theorem 9.7 Consider f ∈ S1,1
µ,L(R

n), possible with µ = 0 (which means that f ∈ F1,1
L (Rn)). If

we take γ0 = L, the general scheme of the “optimal” gradient method generates a sequence {xk}∞k=0

such that

f(xk)− f(x∗) ≤ Lmin

{(
1−

√
µ

L

)k

,
4

(k + 2)2

}
∥x0 − x∗∥22.
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This means that it is “optimal” for the class of functions from S1,1
µ,L(R

n) with µ > 0, or F1,1
L (Rn).

In the particular case of µ > 0, we have the following inequality for k sufficiently large:

∥xk − x∗∥22 ≤
2L

µ

(
1−

√
µ

L

)k

∥x0 − x∗∥22.

Proof:
The first inequality follows from the previous theorem, f(x0) − f(x∗) ≤ ⟨f ′(x∗),x0 − x∗⟩ +

L
2 ∥x0 − x∗∥22, and the fact that f ′(x∗) = 0.

Let us analyze first the case when µ > 0. From Theorem 7.2, we know that we can find functions
such that

f(xk)− f(x∗) ≥ µ

2

(√
L/µ− 1√
L/µ+ 1

)2k

∥x0 − x∗∥22 ≥
µ

2
exp

(
− 4k√

L/µ− 1

)
∥x0 − x∗∥22,

where the second inequality follows from ln(a−1
a+1) = − ln(a+1

a−1) ≥ 1− a+1
a−1 ≥ − 2

a−1 , for a ∈ (1,+∞).
Therefore, the worst case bound to find xk such that f(xk)− f(x∗) < ε can not be better than

k >

√
L/µ− 1

4

(
ln

1

ε
+ ln

µ

2
+ 2 ln ∥x0 − x∗∥2

)
.

On the other hand, from the above result

f(xk)− f(x∗) ≤ L∥x0 − x∗∥22
(
1−

√
µ

L

)k

≤ L∥x0 − x∗∥22 exp

(
− k√

L/µ

)
,

where the second inequality follows from ln(1−a) ≤ −a, a < 1. Therefore, we can guarantee that
k >

√
L/µ

(
ln 1

ε + lnL+ 2 ln ∥x0 − x∗∥2
)
.

For the case µ = 0, the conclusion is obvious from Theorem 7.1.
Finally, for µ > 0, since µ

2∥xk − x∗∥22 + f(x∗) ≤ f(xk) from the definition, we have the second
inequality.

Now, instead of doing line search at Step 4 of the general scheme for the “optimal” gradient
method, let us consider the constant step size iteration xk+1 := yk − 1

Lf
′(yk) (See proof of Theo-

rem 9.5). From the calculations given at Exercise 2, we arrive to the following simplified scheme.
Hereafter, we assume that L > µ to exclude the trivial case L = µ with finished in one iteration.

Constant Step Scheme I for the “Optimal” Gradient Method

Step 0: Choose x0 ∈ Rn, α0 ∈ (0, 1) such that µ ≤ α0(α0L−µ)
1−α0

≤ L, set y0 := x0 and k := 0.

Step 1: Compute f ′(yk).
Step 2: Set xk+1 := yk − 1

Lf
′(yk).

Step 3: Compute αk+1 ∈ (0, 1) from the equation α2
k+1 = (1− αk+1)α

2
k +

µ
Lαk+1.

Step 4: Set βk := αk(1−αk)
α2
k+αk+1

.

Step 5: Set yk+1 := xk+1 + βk(xk+1 − xk), k := k + 1 and go to Step 1.

Observe that the sequences generated by the General Scheme and the Constant Step Scheme
I for the “Optimal” Gradient Methods are different. However, the rate of convergence of the
above method is similar to Theorem 9.6 for γ0 := α0(α0L − µ)/(1 − α0). If we further impose
γ0 = α0(α0L− µ)/(1− α0) = L, we will have the rate of convergence of Theorem 9.7:

f(xk+1)− f(x∗) ≤ Lmin

{(
1−

√
µ

L

)k

,
4

(k + 2)2

}
∥x0 − x∗∥22.
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