General Scheme for the “Optimal” Gradient Method
Step 0: Choose g € R", let 9 > 0 such that L > vy > u > 0.

Set vy := xg and k := 0.
Step 1: Compute oy, € (0,1] from the equation L%z_? (11_— ag) Yk + app.

«

Step 2: Set Y1 = (1 — )k + opps, Yy 1= TG ETEESE
Step 3: Compute f(y;) and f'(y;).
Step 4: Find @y such that f(zgi1) < f(yr) — 52| (y)||3 using “line search”.

Step 5: Set vgiq := (l_ak)kaﬁj;’jr“lyk_akf/(yk), k:=k+1 and go to Step 1.

Theorem 9.6 Consider f € Si’lL(R”), possible with g = 0 (which means that f € FIL’I(R")). The
general scheme of the “optimal” gradient method generates a sequence {x}3°, such that

f@i) = f@) < M [f(@o) + Pl — zoll3 — f(@")]
k-1

where a1 = 0 and A\, = H (1 — «;). Moreover,

i=—1

A < min{(l — ﬂ)k, (2@—;4—11;\/%)2}'
Proof:

The first part is obvious from the definition and Lemma 9.2.

We already know that oy > /%, therefore,
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which only has a meaning if ¢ > 0. For the case p = 0, let us prove first that v, = y9Ax. Obviously
Yo = YoAo, and assuming the induction hypothesis,

Vi1 = (1 = ap)ye + app = (1 — o) v = (1 — ar)yo ke = Yo et1-

Therefore, Lai = V11 = YoAgr1- Since N is a decreasing sequence
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and we have the result. 1

Theorem 9.7 Consider f € Si’lL(R”), possible with ¢ = 0 (which means that f € f}il(R”)). If
we take 79 = L, the general scheme of the “optimal” gradient method generates a sequence {x;}72

such that N
Flay) -~ (@) < Lmin { (1-y/%) (,H:)} w0 — " 3
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This means that it is “optimal” for the class of functions from S WL (R”) with p > 0, or F} 1(R”)
In the particular case of u > 0, we have the following inequality for k sufficiently large

k
2L W
low =2l < 25 (1-4/4) lleo — 2"

Proof:

The first inequality follows from the previous theorem, f(xg) — f(x*) < (f'(x*),xo — *) +
Lllzy — |3, and the fact that f'(z*) = 0.

Let us analyze first the case when g > 0. From Theorem 7.2, we know that we can find functions
such that

2k
* H V L/:U’ -1 *1(2 H 4k * (|12
fleg) — flx") > = | Y—— o —x*||5 > Zexp | ————— | |l@o — 7|5,
where the second inequality follows from In(% ﬁ) —In(¢H) >1-2 > 2 for g € (1, +00).

Therefore, the worst case bound to find @y, such that f(xx) — f(x*) < 5 can not be better than

VL/u—1

k
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On the other hand, from the above result

k
flay) = f(a*) < Ll|lzo — 2*[I3 (1 - \/g> < Lljxo — =*||3 exp <_ J%) )

where the second inequality follows from In(1 —a) < —a, a < 1. Therefore, we can guarantee that
k>+/L/p(Ini+InL+2In|x—x*|2).

For the case p = 0, the conclusion is obvious from Theorem 7.1.

Finally, for p > 0, since &z — @*||3 + f(x*) < f(x)) from the definition, we have the second
inequality. 1

Now, instead of doing line search at Step 4 of the general scheme for the “optimal” gradient
method, let us consider the constant step size iteration xy1q := y;, — % f'(yg) (See proof of Theo-
rem 9.5). From the calculations given at Exercise 2, we arrive to the following simplified scheme.
Hereafter, we assume that L > p to exclude the trivial case L = p with finished in one iteration.

Constant Step Scheme I for the “Optimal” Gradient Method

Step 0: Choose g € R", ap € (0,1) such that p < %50_“) < L, set yg:=xo and k := 0.
Step 1: Compute f'(y;)-

Step 2:  Set i1 =y, — 7.1 (yp)-

Step 3: Compute a1 € (0,1) from the equation 0‘24_1 =(1- O[k-+1)0(% + P

Step 4: Set (i := ag(l-ax)

aZ+agtq

Step 5: Set y;,1 1= Tpt1 + Pr(Try1 — k), k:=k + 1 and go to Step 1.

Observe that the sequences generated by the General Scheme and the Constant Step Scheme
I for the “Optimal” Gradient Methods are different. However, the rate of convergence of the
above method is similar to Theorem 9.6 for 7y := ap(apl — p)/(1 — ap). If we further impose
Yo = ao(apL — p) /(1 — ag) = L, we will have the rate of convergence of Theorem 9.7:

k
f(wk’-i-l) — f(2¥) < Lmin { <1 — \/§> ,(ka)Q} |zo — x*|13.
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