4. {ap}p2 _, is an arbitrary sequence such that a_; =0, a;, € (0,1] (k=0,1,...), and Z o =

0.
k—1 o
Then the pair of sequences { H (1- ai)} and {¢(x)}32, recursively defined as
i=-1 k=0
i@ = (1= an)on(@) +an | FR) + (F (i), @ — i) + Sz =yl

is an estimate sequence.

Proof:
Let us prove by induction on k. For k =0, ¢o(x) = (1 — (1 — a—1)) f(x) + (1 — a—1)¢o(x) since
a_1 = 0. Suppose that the induction hypothesis is valid for any index equal or smaller than k.

Since f € Si(R”),

drn(@) = (1- > (@) + o | £(yi) + (e @ = yi) + 5l — i3]
< (- (z) + ayf(z)
k 1 k—1
= (1 (1—ap) [T~ ai)) fl)+ (1 —ag) (dm(iv) - (1 - JIa- az‘)> f(w)>
i=—1 i=—1
k; 1 k—1
< (1 — (1 — o) (1 - az’)) flx)+ (1 —ag) H (1 - )go(x)
i=—1 i=—1
k
= (1 - H (1- ai)) f@) + [T Q- a)do(@).
i=—1 i=—1
The remaining part is left for exercise. ]

Lemma 9.4 Let f : R" — R be an arbitrary continuously differentiable function. Also let ¢ € R,
p=>0,7% >0, vy € R", {y,}72,, and {a}2, given arbitrarily sequences such that a_; = 0,
ar € (0,1] (k= 0,1,...). In the special case of y = 0, we further assume that ¢ > 0 and
ar <1 (k=0,1,...). Let ¢o(x) = ¢} + 2|l — vo||3. If we define recursively ¢i1(x) such as the
previous lemma:

Ori1(@) = (1= a)én(@) + ax [ Flyp) + (F (wp),@ — i) + Slle — wil3]

then ¢p11(x) preserve the canonical form

Dri1(®) = By + ol — v} (12)
for
Vet = (1 —og)ye + agp,
Vg1 = ,Y:H [(1 = ar) vk + arpyy, — anf' (Y,
Ppp1 = (1—ag)dp +arf(yy) — "(y)lI3

ap(l —ap)v (1
+ SR (Bl — a3+ (i) on — v ) -
Ye+1
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Proof:
We will use again the induction hypothesis in k. Note that ¢f(x) = v0I. Now, for any k > 0,
Gri1(@) = (1 — ag) (@) + agpd = (1 — ag)y + app) I = 1.

Therefore, ¢ry1(x) is a quadratic function of the form (12). Also, xy+1 > 0 since g > 0 and
ar >0 (k=0,1,...); orif 4 =0, we assumed that 79 > 0 and o, € (0,1) (k=0,1,...).
From the first-order optimality condition

Gep1(®) = (1= an)dp(®) + anf (yp) + app(e — yy)
= (1—ap)w(x —vi) + oawf'(yy) + arp(e —y,) = 0.
Thus,
T =V = ’Yk1+1 [(1 = o) vevr + cawpyy, — arf' (Y]

is the minimal optimal solution of ¢ ().
Finally, from what we proved so far and from the definition

Orh1(yr) = Ohor + By — viall3

= (1= ow)ou(yr) + arf(yr) (13)

= (1—o) (¢ + Fllyp — vkll3) + onf (ys).
Now,

1
Vil =Y = — [(1 — o) Vk(vE — Yi) — Oékf/(yk)} .
Ve+1
Therefore,
P e — il = o (U= aw)®Rllve — yill3 + oL/ ()13 (14)
—2a(1 — o) (' (Yr)s vk — Yi)] -

Substituting (14) into (13), we obtain the expression for ¢y ;. 1

Theorem 9.5 Let L > p > 0. Consider f € SL’}L(IR{"), possible with © = 0 (which means that

fe ]-*};1(]1@”)), For given xg, vy € R", let us choose ¢§ = f(xo). Consider also 79 > 0 such that
L >~y > p > 0. Define the sequences {o}7° 1, {150 {Ur}or {&k}i0, {Vk}0, {05020
and {¢r(x)}32, as follows:
a_1 =0,
ai € (0,1] root of  Lai = (1 — o)k + Q= Vit
ORVEVE + Ve+1Tk

y =
: Ve + agp
. 1
@y is such that  f(we1) < f(yg) — ﬁ“f,(yk)ngy
1
vipr = —— (1 — ) yevr + appyy — arf (Y],
V41
b= (= oo+ ond ) — 5o F w13
= -« « —
k41 k) Pk kJ Yk kit Yi)ll2
ag(l — ag)ye (1
OO (B 5 (). ve - w))
Vk+1
* Vk+1
Ory1(m) = Ppyq + T+||CU — vppa3-
k-1
Then, we satisfy all the conditions of Lemma 9.2 for the \;, = H (1—ag).
i=—1
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Proof:
In fact, due to Lemmas 9.3 and 9.4, it just remains to show that oy, € (0, 1] for (k =0,1,...) such

that Zak = 00. In the special case of 4 =0, ap <1 (k=0,1,...). And also that f(x;) < ¢;.

L(]f)t ({18 show both using induction hypothesis.

Consider the quadratic equation in g, go(ag) := Lad + (y0 — ) — Yo = 0. Notice that its
discriminant A := (vyg — p)? + 4L is always positive by the hypothesis. Also, qo(0) = —70 < 0,
but due to the hypothesis again. Therefore, this equation always has a root ag > 0. Since go(1) =
L—pu>0, ap <1, and we have ag € (0,1]. If 4 =0, and ap = 1, we will have L = 0 which implies
~vo = 0 which contradicts our hypothesis. Then «g < 1. In addition, 71 := (1 — ap)vyo + aop > 0 and
Yo + app > 0. The same arguments are valid for any k. Therefore, o, € (0,1], and ap < 1 (k =
0,1,...,) if pu=0.

Finally, La% = (1= o)k +app > (1 — o)+ agp = p. And we have oy, > /%, and therefore,

(0.9}
Z ap = 00, if > 0. For the case y = 0, the argument is the same as the proof of Theorem 9.6.
k=0

For k =0, f(xo) < ¢§. Suppose that the induction hypothesis is valid for any index equal or
smaller than k. Due to the previous lemma,

2
X

Ghnr = (L—an)df +anf(y) — | F (we)ll3
Vk+1
1- /
+W (%Hyk — wll3 + (' (yr), vk — yk:>>
2
> (1= ap)f(@0) + anf (i) = 511 ()l
Ye+1

(1 — ag)yk (1
+ ST (D — o3+ (F () v — )
Vik+1

Now, since f(x) is convex, f(xr) > f(y) + (f'(yi), x — yj), and we have:

2

. o} QR Vk ap(l — o) yep
i1 > T() =5 I wal3+(1—ar) (F (ys), (Or—yi)+ @yt — 5 —— |y
V41 V41 Ve+1

k_'UkH%'

Recall that since f’ is L-Lipschitz continuous, if we apply Lemma 3.4 to y, and @11 = y;— %f’(yk),
we obtain

Fla) — 57 17 @OI3 > Flann)

Therefore, if we impose
ARk
VE+1

it justifies our choice for y,. And putting

(vk —yp)+xp —y, =0

ozi 1
2’7k+1 2L

it justifies our choice for a. Since O”“(l,y;iw > 0, we finally obtain ¢;_ | > f(xx11) as wished.

The above theorem suggests an algorithm to minimize f € S}LE(R")
Notice that in the following “optimal” gradient method, the estimated sequence is not necessary
anymore.
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