Proof:
If o = L, from Theorem 6.17 and the definition of F}L(R”),
u p
(f@) - fwhe-y) > Do—yl3+ Lo —yl3

W 1
> Sle—ylz+ ﬂ!\f’(w) ~ Wl

and the result follows.
It o < L, let us define g(z) = f(x)— 2|3 Then ¢/ (x) = f(x) —pa and (¢ (@)~ (y), =—y) =

(@)= f'(y), 2 —y) —ple—yl§ < (L—p)|z—y|lj since f € F'(R"). Also (¢/(2)—¢/(y), 2 —y) >
pllz — yll3 — pllz — y||3 = 0 due to Theorem 6.17. Therefore, from Theorem 6.8, ¢ € .FIL{M(R”).
We have now (¢/(z) — ¢'(y),  — y) > ﬁ“qﬁ’(w) — ¢'(y)||3 from Theorem 6.8. Therefore

1

(f'(@) = f'(y),® —y) > plle —yll5 + m\lf’(w) — f'(y) — plz —y)|3,

and the result follows after some simplifications. 1

6.3 Exercises

1. Prove Theorem 6.2.
2. Prove Lemma 6.3.

3. Prove Theorem 6.5.
4. Prove Theorem 6.11.
5. Prove Corollary 6.16.
6. Prove Theorem 6.17.

7. Prove Theorem 6.19.

7 Worse Case Analysis for Gradient Based Methods

7.1 Lower Complexity Bound for the class ;"' (R")

Gradient Based Method: Iterative method M generated by a sequence such that

xy € o + Lin{f (o), f'(z1), ..., f(xp_1)}, k>1.

Consider the problem class as follows

min f(x)
xecR"”
Model:
feF R

Oracle: Only function and gradient values are available
Approximate solution: | Find & € R" such that f(&) — f(x*) < e

29



Theorem 7.1 For any 1 < k < ”T_l, and any xy € R", there exists a function f € fzo’l(R”) such
that for any gradient based method of type M, we have

) 3L||lzo — x*|I3

_ > 20 < 2

e — 713

Y

1
sllwo - =,

where x* is the minimum of f(x) and f* := f(x*).

Proof:

This type of methods are invariant with respect to a simultaneous shift of all objects in the
space of variables. Therefore, we can assume that @y = 0.

Consider the family of quadratic functions

Lf1] , & n—1
fi(x) = 712 [x]] + > ()i = [®]i1)” +[x]| —[x]1p, k=1,2,...,[ 5 J
=1
We can see that .
for k=1, fi(z)= (=] —[=]h),
for k=2, fa(x)= %([%‘]? + [z]3 — [)i[x]2 — [z]1),
for k=3, fa(x) = 7([@]f + [z]5 + [2]3 - [z][z]2 — [z]o[z]s — [2]1)
Also, fi(x) = £(Agz — e1), where €1 = (1,0,...,0)T, and
2 -1 0 0 0
-1 2 -1 0 0
ao| @12 0 Opnr
. 0
0 0 -1 2 -1
0 ki 0n—kn—k
After some calculations, we can show that LI = f//(x) = O, k=1,2,..., L%‘lj, and therefore,
fr(@) e FOLRY), k=1,2,..., %]
Also
L 1
— filzr) = -1+ -
Jie = Ji(@r) 8 < +k:+1>’
11— i=1,2,... .k
— kr1> ) 4y )
[@kls {0, i=k+1,k+2 ... n

Let us take f(x) := for11(x), and &* := T 1.
Note that xj € xo + Lin{f'(xo), f'(x1),..., [ (xr—1)} and o = 0. Moreover, since fi(x) =
L(Ayz — e1), [zk]p, = 0 for p > k. Therefore, f,(zx) = fi(zy) for p > k.

Then
* L 1
f@e) = 1" = forrr(®r) = forr1(@2es1) = frl@r) — 3 <—1 + 2/<:+2)
__ L 1 L 1 L 1
> w5 () =5 (o) -5 ()
L
= TG
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After some calculations [Nesterov03], we obtain

. 2(k+1
o — Tarrill2 < (3>
2k+1
Also 2y — 2* 3 = lox Tzl > S (@mrile)®
i=k+1
And then, with more calculations [Nesterov03], we have the results. 1

If we consider very large problems where we can not afford n number of iterations, the above
theorem says that:

e The optimal value can be expected to decrease fast.

e The convergence to the optimal solution can be arbitrarily slow.

7.2 Lower Complexity Bound for the class SZOLl (R™)

Gradient Based Method: Iterative method M generated by a sequence such that

xy € To + Lin{f' (zo), f'(x1), ..., f(Zk_1)}, k> 1.

Consider the problem class as follows

Model: min f(x)

feS®
Oracle: Only function and gradient values are available

Approximate solution: | Find & € R™ such that fgzc) _*f(;c ) <e
|z —z*[5<e

Let us define

R = 52 = {{xz}fil

o0
Zx?<oo}.

i=1

Theorem 7.2 For any &g € R™, there exists a function f € SZOLl (R*°) such that for any gradient
based method of type M, we have

2k
* pofvL/p—1 * |12
flxg) = > 5 (W) [0 |

(V L/‘H)%H a3
VL/n+1 0

e — 2|3

where * is the minimum of f(x) and f* := f(x*).

Proof:

This type of methods are invariant with respect to a simultaneous shift of all objects in the
space of variables. Therefore, we can assume that o = {0}5°;.

Consider the following quadratic function

L/ —1) {

(@) = L2 S al? + 3 (ali — (o) - 2[w]1} + 52l

i=1
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